1] Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 8109, USA [2] Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [3] Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA.
Nat Commun. 2013;4:2617. doi: 10.1038/ncomms3617.
Global 'multi-omics' profiling of cancer cells harbours the potential for characterizing the signalling networks associated with specific oncogenes. Here we profile the transcriptome, proteome and phosphoproteome in a panel of non-small cell lung cancer (NSCLC) cell lines in order to reconstruct targetable networks associated with KRAS dependency. We develop a two-step bioinformatics strategy addressing the challenge of integrating these disparate data sets. We first define an 'abundance-score' combining transcript, protein and phospho-protein abundances to nominate differentially abundant proteins and then use the Prize Collecting Steiner Tree algorithm to identify functional sub-networks. We identify three modules centred on KRAS and MET, LCK and PAK1 and β-Catenin. We validate activation of these proteins in KRAS-dependent (KRAS-Dep) cells and perform functional studies defining LCK as a critical gene for cell proliferation in KRAS-Dep but not KRAS-independent NSCLCs. These results suggest that LCK is a potential druggable target protein in KRAS-Dep lung cancers.
对癌细胞进行全球“多组学”分析可能有助于鉴定与特定致癌基因相关的信号网络。在这里,我们对一组非小细胞肺癌(NSCLC)细胞系的转录组、蛋白质组和磷酸化蛋白质组进行了分析,以重建与 KRAS 依赖性相关的可靶向网络。我们开发了一种两步生物信息学策略,以解决整合这些不同数据集的挑战。我们首先定义了一个“丰度分数”,将转录本、蛋白质和磷酸化蛋白质的丰度结合起来,提名差异丰度的蛋白质,然后使用 Prize Collecting Steiner Tree 算法来识别功能子网络。我们鉴定了三个以 KRAS 和 MET、LCK 和 PAK1 以及β-连环蛋白为中心的模块。我们验证了这些蛋白在依赖 KRAS(KRAS-Dep)细胞中的激活情况,并进行了功能研究,确定 LCK 是 KRAS-Dep 但不是 KRAS 非依赖性 NSCLC 细胞增殖的关键基因。这些结果表明,LCK 是 KRAS-Dep 肺癌中一种潜在的可用药靶蛋白。