Gailer Juan Pablo, Kaiser Thomas M
Biocenter Grindel and Zoological Museum, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany.
J Morphol. 2014 Mar;275(3):328-41. doi: 10.1002/jmor.20217. Epub 2013 Oct 18.
Plasticity of tooth shape in mammals is of great adaptive value for the efficient exploitation of specific feeding niches and is a crucial mechanism for ecological diversification. In this study, we aimed to infer chewing effectiveness from the functional shape of different postcanine teeth within bovids, the most diverse extant group of large herbivorous mammals. We consider the postcanine dentition as a masticatory unit and test for differences related to food biomechanical properties, dietary abrasiveness, and chewing dynamics. We compare functional properties of the postcanine tooth row among species with well-known dietary strategies by integrating digitalization of high-resolution occlusal surface 3D-models of upper postcanine dentitions and quantification of the indentation index (D), a structural parameter representing enamel complexity. We test for differences in the occlusal shape among tooth positions in the postcanine dentition using robust, heteroscedastic tests in a one-way analysis of variance. Our results show three distinct patterns of enamel complexity along the tooth row: (1) D is more homogeneously distributed among tooth positions; (2) D increases gradually in the mesiodistal axis along the tooth row; and (3) D increases abruptly only at the transition between premolars and molars. We interpreted these patterns as different adaptive configurations of the postcanine tooth row relating to diet. Grass- and fruit-eating bovids show the same abrupt increase in enamel complexity at the transition from premolars to molars. Intermediate feeding and leaf-browsing species show the same gradual, mesiodistal increase in complexity along the tooth row. The absolute physical dietary resistance (biomechanical properties plus abrasiveness) and its relation to mechanical constraints of the chewing stroke are the likely selective factors leading to convergence of enamel complexity patterns along the tooth row among taxa with different diets.
哺乳动物牙齿形状的可塑性对于有效利用特定的觅食生态位具有重要的适应性价值,并且是生态多样化的关键机制。在本研究中,我们旨在从牛科动物(现存最多样化的大型草食性哺乳动物群体)不同犬齿后的牙齿功能形状推断咀嚼效率。我们将犬齿后的齿列视为一个咀嚼单元,并测试与食物生物力学特性、饮食磨损性和咀嚼动力学相关的差异。通过整合上颌犬齿后齿列高分辨率咬合面三维模型的数字化以及压痕指数(D)的量化(D是代表牙釉质复杂性的结构参数),我们比较了具有已知饮食策略的物种之间犬齿后齿列的功能特性。我们在单向方差分析中使用稳健的、异方差检验来测试犬齿后齿列中不同牙齿位置的咬合形状差异。我们的结果显示沿齿列存在三种不同的牙釉质复杂性模式:(1)D在牙齿位置之间分布更均匀;(2)D沿齿列在近远中轴上逐渐增加;(3)D仅在臼齿和前臼齿之间的过渡处突然增加。我们将这些模式解释为犬齿后齿列与饮食相关的不同适应性构型。食草和食果的牛科动物在前臼齿到臼齿的过渡处牙釉质复杂性呈现相同的突然增加。中间觅食和食叶物种沿齿列在近远中方向上复杂性呈现相同的逐渐增加。绝对物理饮食抗性(生物力学特性加磨损性)及其与咀嚼冲程机械限制的关系可能是导致不同饮食类群沿齿列牙釉质复杂性模式趋同的选择因素。