Dipartimento di Medicina Molecolare e Biotecnologie mediche, Istituto di Endocrinologia ed Oncologia Sperimentale del C.N.R., Università Federico II, 80131 Napoli, Italy, IRCCS CROB, Dipartimento di Oncologia Sperimentale, via Padre Pio, 1 85028 Rionero in Vulture, Italy, Dipartimento di Medicina e di Scienze della Salute, Università del Molise, 86100 Campobasso, Itay, Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy, Dipartimento di Biologia Strutturale e Funzionale, Università dell'Insubria, Varese 21100, Italy, Department of Molecular Biology and Microbiology and Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA and Institute of Cancer Research, Departments of Microbiology and Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA.
Nucleic Acids Res. 2014 Jan;42(2):804-21. doi: 10.1093/nar/gkt920. Epub 2013 Oct 16.
We report that homology-directed repair of a DNA double-strand break within a single copy Green Fluorescent Protein (GFP) gene in HeLa cells alters the methylation pattern at the site of recombination. DNA methyl transferase (DNMT)1, DNMT3a and two proteins that regulate methylation, Np95 and GADD45A, are recruited to the site of repair and are responsible for selective methylation of the promoter-distal segment of the repaired DNA. The initial methylation pattern of the locus is modified in a transcription-dependent fashion during the 15-20 days following repair, at which time no further changes in the methylation pattern occur. The variation in DNA modification generates stable clones with wide ranges of GFP expression. Collectively, our data indicate that somatic DNA methylation follows homologous repair and is subjected to remodeling by local transcription in a discrete time window during and after the damage. We propose that DNA methylation of repaired genes represents a DNA damage code and is source of variation of gene expression.
我们报告称,在 HeLa 细胞中单拷贝绿色荧光蛋白(GFP)基因内的 DNA 双链断裂的同源定向修复会改变重组位点的甲基化模式。DNA 甲基转移酶(DNMT)1、DNMT3a 和两种调节甲基化的蛋白质 Np95 和 GADD45A 被招募到修复位点,并负责修复 DNA 的启动子远端片段的选择性甲基化。在修复后 15-20 天内,该基因座的初始甲基化模式以转录依赖性的方式发生改变,此时甲基化模式不再发生进一步变化。DNA 修饰的变化产生了具有广泛 GFP 表达范围的稳定克隆。总的来说,我们的数据表明,体细胞 DNA 甲基化遵循同源修复,并在损伤过程中和之后的一个特定时间窗口内受到局部转录的重塑。我们提出,修复基因的 DNA 甲基化代表了 DNA 损伤代码,是基因表达变异的来源。