McLeod D D, Parsons M W, Hood R, Hiles B, Allen J, McCann S K, Murtha L, Calford M B, Levi C R, Spratt N J
Discipline of Human Physiology, School of Biomedical Sciences & Pharmacy, Faculty of Health, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia.
Department of Neurology, John Hunter Hospital, Hunter Region M.C., New South Wales, Australia.
Int J Stroke. 2015 Jun;10(4):553-9. doi: 10.1111/ijs.12147. Epub 2013 Oct 21.
Perfusion computed tomography is becoming more widely used as a clinical imaging tool to predict potentially salvageable tissue (ischemic penumbra) after ischemic stroke and guide reperfusion therapies.
The study aims to determine whether there are important changes in perfusion computed tomography thresholds defining ischemic penumbra and infarct core over time following stroke.
Permanent middle cerebral artery occlusion was performed in adult outbred Wistar rats (n = 6) and serial perfusion computed tomography scans were taken every 30 mins for 2 h. To define infarction thresholds at 1 h and 2 h post-stroke, separate groups of rats underwent 1 h (n = 6) and 2 h (n = 6) of middle cerebral artery occlusion followed by reperfusion. Infarct volumes were defined by histology at 24 h. Co-registration with perfusion computed tomography maps (cerebral blood flow, cerebral blood volume, and mean transit time) permitted pixel-based analysis of thresholds defining infarction, using receiver operating characteristic curves.
Relative cerebral blood flow was the perfusion computed tomography parameter that most accurately predicted penumbra (area under the curve = 0.698) and also infarct core (area under the curve = 0.750). A relative cerebral blood flow threshold of < 75% of mean contralateral cerebral blood flow most accurately predicted penumbral tissue at 0.5 h (area under the curve = 0.660), 1 h (area under the curve = 0.659), 1.5 h (area under the curve = 0.636), and 2 h (area under the curve = 0.664) after stroke onset. A relative cerebral blood flow threshold of < 55% of mean contralateral most accurately predicted infarct core at 1 h (area under the curve = 0.765) and at 2 h (area under the curve = 0.689) after middle cerebral artery occlusion.
The data provide perfusion computed tomography defined relative cerebral blood flow thresholds for infarct core and ischemic penumbra within the first two hours after experimental stroke in rats. These thresholds were shown to be stable to define the volume of infarct core and penumbra within this time window.
灌注计算机断层扫描作为一种临床成像工具,越来越广泛地用于预测缺血性中风后可能可挽救的组织(缺血半暗带)并指导再灌注治疗。
本研究旨在确定中风后随着时间推移,定义缺血半暗带和梗死核心的灌注计算机断层扫描阈值是否有重要变化。
对成年远交系Wistar大鼠(n = 6)进行永久性大脑中动脉闭塞,并在2小时内每隔30分钟进行一次连续灌注计算机断层扫描。为了确定中风后1小时和2小时的梗死阈值,将单独的大鼠组进行1小时(n = 6)和2小时(n = 6)的大脑中动脉闭塞,然后再灌注。在24小时时通过组织学确定梗死体积。通过与灌注计算机断层扫描图(脑血流量、脑血容量和平均通过时间)进行配准,使用受试者工作特征曲线对定义梗死的阈值进行基于像素的分析。
相对脑血流量是灌注计算机断层扫描参数中最能准确预测半暗带(曲线下面积 = 0.698)和梗死核心(曲线下面积 = 0.750)的参数。相对脑血流量阈值<对侧平均脑血流量的75%最能准确预测中风发作后0.5小时(曲线下面积 = 0.660)、1小时(曲线下面积 = 0.659)、1.5小时(曲线下面积 = 0.636)和2小时(曲线下面积 = 0.664)的半暗带组织。相对脑血流量阈值<对侧平均值的55%最能准确预测大脑中动脉闭塞后1小时(曲线下面积 = 0.765)和2小时(曲线下面积 = 0.689)的梗死核心。
这些数据提供了大鼠实验性中风后最初两小时内灌注计算机断层扫描定义的梗死核心和缺血半暗带的相对脑血流量阈值。这些阈值在该时间窗口内被证明对于定义梗死核心和半暗带的体积是稳定的。