Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid 28040, Spain.
BMC Neurosci. 2013 Oct 18;14:127. doi: 10.1186/1471-2202-14-127.
In terms of vesicular recycling, synaptic efficiency is a key determinant of the fidelity of synaptic transmission. The ability of a presynaptic terminal to reuse its vesicular content is thought to be a signature of synaptic maturity and this process depends on the activity of several proteins that govern exo/endocytosis. Upon stimulation, individual terminals in networks of cultured cerebellar granule neurons exhibit heterogeneous exocytic responses, which reflect the distinct states of maturity and plasticity intrinsic to individual synaptic terminals. This dynamic scenario serves as the substrate for processes such as scaling, plasticity and synaptic weight redistribution. Presynaptic strength has been associated with the activity of several types of proteins, including the scaffolding proteins that form the active zone cytomatrix and the proteins involved in presynaptic exocytosis.
We have combined fluorescence imaging techniques using the styryl dye FM1-43 in primary cultures of cerebellar granule cells with subsequent post-hoc immunocytochemistry in order to study synaptic efficiency in terms of vesicular release. We describe a protocol to easily quantify these results with minimal user intervention.
In this study we describe a technique that specifically correlates presynaptic activity with the levels of presynaptic markers. This method involves the use of the styryl dye FM1-43 to estimate the release capacity of a synaptic terminal, and the subsequent post-hoc immunolabelling of thousands of individual nerve terminals. We observed a strong correlation between the release capacity of the nerve terminal and the levels of the RIM1α but not the Munc13-1 protein in the active zone.
Our findings support those of previous studies and point out to RIM1α as a crucial factor in determining synaptic efficiency. These results also demonstrate that this technique is a useful tool to analyse the molecular differences underlying the heterogeneous responses exhibited by neuronal networks.
在囊泡循环方面,突触效率是突触传递保真度的关键决定因素。突触前末梢重复使用其囊泡内容的能力被认为是突触成熟的标志,这个过程依赖于几种调节内吞/胞吐的蛋白质的活性。在刺激下,培养的小脑颗粒神经元网络中的单个末梢表现出异质的胞吐反应,这反映了单个突触末梢内在的成熟和可塑性的不同状态。这种动态情况是诸如缩放、可塑性和突触权重再分配等过程的基础。突触前强度与几种类型的蛋白质的活性有关,包括形成活性区细胞基质的支架蛋白和参与突触胞吐的蛋白质。
我们将使用荧光成像技术(在原代小脑颗粒细胞培养物中使用 styryl 染料 FM1-43)与随后的免疫细胞化学后处理相结合,以研究囊泡释放方面的突触效率。我们描述了一种使用最小的用户干预即可轻松量化这些结果的方案。
在这项研究中,我们描述了一种将突触前活动与突触前标记物水平相关联的技术。该方法涉及使用 styryl 染料 FM1-43 来估计突触前末梢的释放能力,以及随后对数千个单个神经末梢进行免疫标记。我们观察到神经末梢的释放能力与 RIM1α 水平之间存在很强的相关性,但与活性区中的 Munc13-1 蛋白无关。
我们的发现支持了先前的研究,并指出 RIM1α 是决定突触效率的关键因素。这些结果还表明,该技术是分析神经元网络表现出的异质反应背后的分子差异的有用工具。