Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02493, USA.
Cold Spring Harb Perspect Biol. 2012 Jan 1;4(1):a005736. doi: 10.1101/cshperspect.a005736.
Neural circuits must maintain stable function in the face of many plastic challenges, including changes in synapse number and strength, during learning and development. Recent work has shown that these destabilizing influences are counterbalanced by homeostatic plasticity mechanisms that act to stabilize neuronal and circuit activity. One such mechanism is synaptic scaling, which allows neurons to detect changes in their own firing rates through a set of calcium-dependent sensors that then regulate receptor trafficking to increase or decrease the accumulation of glutamate receptors at synaptic sites. Additional homeostatic mechanisms may allow local changes in synaptic activation to generate local synaptic adaptations, and network-wide changes in activity to generate network-wide adjustments in the balance between excitation and inhibition. The signaling pathways underlying these various forms of homeostatic plasticity are currently under intense scrutiny, and although dozens of molecular pathways have now been implicated in homeostatic plasticity, a clear picture of how homeostatic feedback is structured at the molecular level has not yet emerged. On a functional level, neuronal networks likely use this complex set of regulatory mechanisms to achieve homeostasis over a wide range of temporal and spatial scales.
神经回路必须在面对许多可塑性挑战时保持稳定的功能,包括在学习和发育过程中突触数量和强度的变化。最近的工作表明,这些破坏稳定的影响被体内平衡可塑性机制所抵消,这些机制作用是稳定神经元和回路活动。其中一种机制是突触缩放,它允许神经元通过一组钙依赖性传感器检测自身放电率的变化,然后调节受体运输以增加或减少突触部位谷氨酸受体的积累。其他的体内平衡机制可能允许局部的突触激活变化产生局部的突触适应性,以及网络范围的活动变化产生兴奋和抑制之间的网络范围的平衡调整。目前正在深入研究这些各种形式的体内平衡可塑性的信号通路,尽管现在已经有数十种分子途径与体内平衡可塑性有关,但体内平衡反馈在分子水平上的结构仍然没有清晰的图景。在功能水平上,神经元网络可能使用这一组复杂的调节机制在广泛的时间和空间尺度上实现体内平衡。
Cold Spring Harb Perspect Biol. 2012-1-1
Prog Brain Res. 2014
Cell. 2008-10-31
Neural Dev. 2018-6-1
Annu Rev Neurosci. 2024-8
Neuron. 2010-5-13
Curr Opin Neurobiol. 2011-10-7
Proc Natl Acad Sci U S A. 2025-8-5
Cell Mol Neurobiol. 2025-7-16
Front Cell Dev Biol. 2025-6-27
J Cell Biol. 2025-9-1
Nat Rev Neurosci. 2025-7-3
Nat Neurosci. 2025-6-30
Nat Neurosci. 2011-3-27
J Neurosci. 2011-2-9
Nat Neurosci. 2010-12-26
Proc Natl Acad Sci U S A. 2010-11-24