SPCTS, UMR 7315, ENSCI, CNRS; Centre Européen de la Céramique, 12 rue Atlantis, 87068 Limoges cedex, France.
J Phys Chem B. 2013 Nov 21;117(46):14509-17. doi: 10.1021/jp407247y. Epub 2013 Nov 7.
Numerical simulations constitute a precious tool for understanding the role of key parameters influencing the colloidal arrangement in suspensions, which is crucial for many applications. The present paper investigates numerically the role of hydrodynamic interactions on the aggregation processes in colloidal suspensions. Three simulation techniques are used: Brownian dynamics without hydrodynamic interactions, Brownian dynamics including some of the hydrodynamic interactions, using the Yamakawa-Rotne-Prager tensor, and stochastic rotation dynamics coupled with molecular dynamics. A system of monodisperse colloids strongly interacting through a generalized Lennard-Jones potential is studied for a colloid volume fraction ranging from 2.5 to 20%. Interestingly, effects of the hydrodynamic interactions are shown in the details of the aggregation processes. It is observed that the hydrodynamic interactions slow down the aggregation kinetics in the initial nucleation stage, while they speed up the next cluster coalescence stage. It is shown that the latter is due to an enhanced cluster diffusion in the simulations including hydrodynamic interactions. The higher the colloid volume fraction, the more pronounced the effects on the aggregation kinetics. It is also observed that hydrodynamic interactions slow down the reorganization kinetics. It turns out that the Brownian dynamics technique using the Yamakawa-Rotne-Prager tensor tends to overestimate the effects on cluster diffusion and cluster reorganization, even if it can be a method of choice for very dilute suspensions.
数值模拟是理解影响悬浮液中胶体排列的关键参数作用的宝贵工具,这对于许多应用至关重要。本文通过数值模拟研究了流体动力学相互作用对胶体悬浮液中聚集过程的作用。使用了三种模拟技术:没有流体动力学相互作用的布朗动力学、包括部分流体动力学相互作用的布朗动力学,使用 Yamakawa-Rotne-Prager 张量、以及与分子动力学耦合的随机旋转动力学。研究了一个通过广义 Lennard-Jones 势强烈相互作用的单分散胶体系统,胶体体积分数范围从 2.5 到 20%。有趣的是,流体动力学相互作用的影响在聚集过程的细节中表现出来。观察到,流体动力学相互作用在初始成核阶段减缓了聚集动力学,而在下一个簇聚合并阶段加速了聚集动力学。这是由于在包括流体动力学相互作用的模拟中增强了簇扩散。胶体体积分数越高,对聚集动力学的影响就越明显。还观察到,流体动力学相互作用减缓了重组动力学。事实证明,使用 Yamakawa-Rotne-Prager 张量的布朗动力学技术往往会高估对簇扩散和簇重组的影响,即使它可能是非常稀溶液体的首选方法。