Iorio Antonio, Melchionna Simone, Derreumaux Philippe, Sterpone Fabio
Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, Paris 75005, France.
IAC-CNR, Via dei Taurini 19, Rome 00185, Italy.
PNAS Nexus. 2024 Dec 7;4(1):pgae548. doi: 10.1093/pnasnexus/pgae548. eCollection 2025 Jan.
The driving mechanisms at the base of the clearance of biological wastes in the brain interstitial space (ISS) are still poorly understood and an actively debated subject. A complete comprehension of the processes that lead to the aggregation of amyloid proteins in such environment, hallmark of the onset and progression of Alzheimer's disease, is of crucial relevance. Here we employ combined computational fluid dynamics and molecular dynamics techniques to uncover the role of fluid flow and proteins transport in the brain ISS. Our work identifies diffusion as the principal mechanism for amyloid- proteins clearance, whereas fluid advection may lead transport for larger molecular bodies, like amyloid- aggregates or extracellular vesicles. We also clearly quantify the impact of large nascent prefibrils on the fluid flowing and shearing. Finally, we show that, even in the irregular brain interstitial space (ISS), hydrodynamic interactions enhance amyloid- aggregation at all stages of the aggregation pathway. Our results are key to understand the role of fluid flow and solvent-solute interplay on therapeutics like antibodies acting in the brain ISS.
大脑间质空间(ISS)中生物废物清除的驱动机制仍未得到充分理解,是一个备受争议的话题。全面理解导致淀粉样蛋白在这种环境中聚集的过程至关重要,因为这是阿尔茨海默病发病和进展的标志。在这里,我们采用计算流体动力学和分子动力学相结合的技术,来揭示流体流动和蛋白质运输在大脑ISS中的作用。我们的研究确定扩散是淀粉样蛋白清除的主要机制,而流体平流可能导致更大分子体(如淀粉样聚集体或细胞外囊泡)的运输。我们还明确量化了新生大原纤维对流体流动和剪切的影响。最后,我们表明,即使在不规则的大脑间质空间(ISS)中,流体动力学相互作用也会在聚集途径的所有阶段增强淀粉样蛋白的聚集。我们的结果对于理解流体流动和溶剂 - 溶质相互作用在作用于大脑ISS的治疗药物(如抗体)中的作用至关重要。