From the Departments of Cellular and Molecular Medicine.
J Biol Chem. 2013 Dec 6;288(49):35222-36. doi: 10.1074/jbc.M113.513705. Epub 2013 Oct 21.
Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment.
早老素是γ-分泌酶复合物的催化亚基,通过调节基因转录,成为多条细胞通路的上游调控因子。然而,这些通路的潜在机制和受其调控的基因尚未完全阐明。在这项研究中,我们分别在果蝇幼虫大脑和小鼠胚胎成纤维细胞中鉴定出了 Tequila 和其哺乳动物同源物 Prss12,它们是早老素负调控的基因。Prss12 编码丝氨酸蛋白酶神经酶,它能切割硫酸乙酰肝素蛋白聚糖 agrin。神经酶活性改变会导致严重的突触和认知缺陷;尽管如此,调节神经酶表达和活性的分子过程仍知之甚少。我们在小鼠胚胎成纤维细胞中使用 γ-分泌酶药物抑制剂和早老素突变体进行研究,发现成熟的 γ-分泌酶复合物是抑制神经酶表达和 agrin 切割所必需的。我们还确定 PSEN1 内切酶或已知 γ-分泌酶底物的加工对于这个过程并非必需。在转录水平上,PSEN1/2 的缺失会诱导环磷酸腺苷反应元件结合蛋白 (CREB)/CREB 结合蛋白结合,激活的组蛋白标记在神经酶启动子上积累,以及神经酶转录和功能的上调,这依赖于 GSK3 的活性。当 PSEN1/2 重新引入时,这种活跃的表观遗传状态会被含有甲基 CpG 结合蛋白 2 (MeCP2)的抑制状态所取代,并导致神经酶表达减少。全基因组分析显示,数百个其他的小鼠启动子中,CREB 结合也受到早老素存在/缺失的类似调节。因此,我们的研究确定了 Tequila 和神经酶是早老素负调控的新基因,并揭示了早老素通过控制 CREB 募集来调节 CREB 信号的新机制。