Suppr超能文献

小鼠基因组中顺式调控序列的图谱。

A map of the cis-regulatory sequences in the mouse genome.

机构信息

Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093-0653, USA.

出版信息

Nature. 2012 Aug 2;488(7409):116-20. doi: 10.1038/nature11243.

Abstract

The laboratory mouse is the most widely used mammalian model organism in biomedical research. The 2.6 × 10(9) bases of the mouse genome possess a high degree of conservation with the human genome, so a thorough annotation of the mouse genome will be of significant value to understanding the function of the human genome. So far, most of the functional sequences in the mouse genome have yet to be found, and the cis-regulatory sequences in particular are still poorly annotated. Comparative genomics has been a powerful tool for the discovery of these sequences, but on its own it cannot resolve their temporal and spatial functions. Recently, ChIP-Seq has been developed to identify cis-regulatory elements in the genomes of several organisms including humans, Drosophila melanogaster and Caenorhabditis elegans. Here we apply the same experimental approach to a diverse set of 19 tissues and cell types in the mouse to produce a map of nearly 300,000 murine cis-regulatory sequences. The annotated sequences add up to 11% of the mouse genome, and include more than 70% of conserved non-coding sequences. We define tissue-specific enhancers and identify potential transcription factors regulating gene expression in each tissue or cell type. Finally, we show that much of the mouse genome is organized into domains of coordinately regulated enhancers and promoters. Our results provide a resource for the annotation of functional elements in the mammalian genome and for the study of mechanisms regulating tissue-specific gene expression.

摘要

实验室小鼠是生物医学研究中使用最广泛的哺乳动物模式生物。小鼠基因组的 26 亿个碱基对与人类基因组具有高度的同源性,因此对小鼠基因组进行全面注释将对理解人类基因组的功能具有重要意义。到目前为止,小鼠基因组中的大多数功能序列尚未被发现,特别是顺式调控序列的注释还很差。比较基因组学是发现这些序列的有力工具,但单凭它本身并不能确定它们的时空功能。最近,ChIP-Seq 已被开发用于鉴定人类、黑腹果蝇和秀丽隐杆线虫等几种生物的基因组中的顺式调控元件。在这里,我们将相同的实验方法应用于小鼠的 19 种不同组织和细胞类型,生成了近 30 万个小鼠顺式调控序列的图谱。注释序列加起来占小鼠基因组的 11%,包括超过 70%的保守非编码序列。我们定义了组织特异性增强子,并确定了在每种组织或细胞类型中调节基因表达的潜在转录因子。最后,我们表明,小鼠基因组的大部分组织被协调调控的增强子和启动子组成的结构域所组织。我们的研究结果为哺乳动物基因组中功能元件的注释以及研究调节组织特异性基因表达的机制提供了资源。

相似文献

1
A map of the cis-regulatory sequences in the mouse genome.
Nature. 2012 Aug 2;488(7409):116-20. doi: 10.1038/nature11243.
2
A comparative encyclopedia of DNA elements in the mouse genome.
Nature. 2014 Nov 20;515(7527):355-64. doi: 10.1038/nature13992.
3
A map of cis-regulatory elements and 3D genome structures in zebrafish.
Nature. 2020 Dec;588(7837):337-343. doi: 10.1038/s41586-020-2962-9. Epub 2020 Nov 25.
4
A cis-regulatory map of the Drosophila genome.
Nature. 2011 Mar 24;471(7339):527-31. doi: 10.1038/nature09990.
6
A comparative analysis of chromatin accessibility in cattle, pig, and mouse tissues.
BMC Genomics. 2020 Oct 7;21(1):698. doi: 10.1186/s12864-020-07078-9.
7
Principles of regulatory information conservation between mouse and human.
Nature. 2014 Nov 20;515(7527):371-375. doi: 10.1038/nature13985.
8
Occupancy maps of 208 chromatin-associated proteins in one human cell type.
Nature. 2020 Jul;583(7818):720-728. doi: 10.1038/s41586-020-2023-4. Epub 2020 Jul 29.
9
The accessible chromatin landscape of the human genome.
Nature. 2012 Sep 6;489(7414):75-82. doi: 10.1038/nature11232.
10
Comparison of sequence variants in transcriptomic control regions across 17 mouse genomes.
Database (Oxford). 2014 Mar 18;2014:bau020. doi: 10.1093/database/bau020. Print 2014.

引用本文的文献

1
5
Nucleosome organization of mouse embryos during pre-implantation development.
Sci Rep. 2025 Jul 1;15(1):21894. doi: 10.1038/s41598-025-05642-5.
6
SCIG: Machine learning uncovers cell identity genes in single cells by genetic sequence codes.
Nucleic Acids Res. 2025 May 22;53(10). doi: 10.1093/nar/gkaf431.
8
OLIG2 mediates a rare targetable stem cell fate transition in sonic hedgehog medulloblastoma.
Nat Commun. 2025 Feb 4;16(1):1092. doi: 10.1038/s41467-024-54858-y.
9
The α-globin super-enhancer acts in an orientation-dependent manner.
Nat Commun. 2025 Jan 25;16(1):1033. doi: 10.1038/s41467-025-56380-1.
10
Enhancer regulatory networks globally connect non-coding breast cancer loci to cancer genes.
Genome Biol. 2025 Jan 17;26(1):10. doi: 10.1186/s13059-025-03474-0.

本文引用的文献

1
Spatial partitioning of the regulatory landscape of the X-inactivation centre.
Nature. 2012 Apr 11;485(7398):381-5. doi: 10.1038/nature11049.
2
Topological domains in mammalian genomes identified by analysis of chromatin interactions.
Nature. 2012 Apr 11;485(7398):376-80. doi: 10.1038/nature11082.
5
A user's guide to the encyclopedia of DNA elements (ENCODE).
PLoS Biol. 2011 Apr;9(4):e1001046. doi: 10.1371/journal.pbio.1001046. Epub 2011 Apr 19.
6
Mapping and analysis of chromatin state dynamics in nine human cell types.
Nature. 2011 May 5;473(7345):43-9. doi: 10.1038/nature09906. Epub 2011 Mar 23.
7
Enhancer function: new insights into the regulation of tissue-specific gene expression.
Nat Rev Genet. 2011 Apr;12(4):283-93. doi: 10.1038/nrg2957. Epub 2011 Mar 1.
8
Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project.
Science. 2010 Dec 24;330(6012):1775-87. doi: 10.1126/science.1196914. Epub 2010 Dec 22.
9
Identification of functional elements and regulatory circuits by Drosophila modENCODE.
Science. 2010 Dec 24;330(6012):1787-97. doi: 10.1126/science.1198374. Epub 2010 Dec 22.
10
A unique chromatin signature uncovers early developmental enhancers in humans.
Nature. 2011 Feb 10;470(7333):279-83. doi: 10.1038/nature09692. Epub 2010 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验