Suppr超能文献

人皮质骨中骨陷窝-骨小管系统的动态渗透性

Dynamic permeability of the lacunar-canalicular system in human cortical bone.

作者信息

Benalla M, Palacio-Mancheno P E, Fritton S P, Cardoso L, Cowin S C

机构信息

Department of Biomedical Engineering, The City College of New York, Steinman Hall, 160 Convent, New York, NY, USA.

出版信息

Biomech Model Mechanobiol. 2014 Aug;13(4):801-12. doi: 10.1007/s10237-013-0535-7. Epub 2013 Oct 22.

Abstract

A new method for the experimental determination of the permeability of a small sample of a fluid-saturated hierarchically structured porous material is described and applied to the determination of the lacunar-canalicular permeability [Formula: see text] in bone. The interest in the permeability of the lacunar-canalicular pore system (LCS) is due to the fact that the LCS is considered to be the site of bone mechanotransduction due to the loading-driven fluid flow over cellular structures. The permeability of this space has been estimated to be anywhere from [Formula: see text] to [Formula: see text]. However, the vascular pore system and LCS are intertwined, rendering the permeability of the much smaller-dimensioned LCS challenging to measure. In this study, we report a combined experimental and analytical approach that allowed the accurate determination of the [Formula: see text] to be on the order of [Formula: see text] for human osteonal bone. It was found that the [Formula: see text] has a linear dependence on loading frequency, decreasing at a rate of [Formula: see text]/Hz from 1 to 100 Hz, and using the proposed model, the porosity alone was able to explain 86 % of the [Formula: see text] variability.

摘要

描述了一种用于实验测定流体饱和的层次结构多孔材料小样品渗透率的新方法,并将其应用于测定骨中腔隙-小管渗透率[公式:见原文]。对腔隙-小管孔隙系统(LCS)渗透率感兴趣的原因在于,由于加载驱动的流体在细胞结构上流动,LCS被认为是骨力传导的部位。该空间的渗透率估计在[公式:见原文]到[公式:见原文]之间。然而,血管孔隙系统和LCS相互交织,使得尺寸小得多的LCS的渗透率难以测量。在本研究中,我们报告了一种结合实验和分析的方法,该方法能够准确测定人骨单位骨的[公式:见原文]约为[公式:见原文]。研究发现,[公式:见原文]与加载频率呈线性关系,从1赫兹到100赫兹以[公式:见原文]/赫兹的速率降低,并且使用所提出的模型,仅孔隙率就能解释[公式:见原文]变异性的86%。

相似文献

1
Dynamic permeability of the lacunar-canalicular system in human cortical bone.
Biomech Model Mechanobiol. 2014 Aug;13(4):801-12. doi: 10.1007/s10237-013-0535-7. Epub 2013 Oct 22.
2
Analytical basis for the determination of the lacunar-canalicular permeability of bone using cyclic loading.
Biomech Model Mechanobiol. 2012 Jul;11(6):767-80. doi: 10.1007/s10237-011-0350-y. Epub 2011 Sep 30.
3
Experimental determination of the permeability in the lacunar-canalicular porosity of bone.
J Biomech Eng. 2009 Oct;131(10):101007. doi: 10.1115/1.3200908.
4
In situ permeability measurement of the mammalian lacunar-canalicular system.
Bone. 2010 Apr;46(4):1075-81. doi: 10.1016/j.bone.2010.01.371. Epub 2010 Jan 18.
5
A multi-layered poroelastic slab model under cyclic loading for a single osteon.
Biomed Eng Online. 2018 Jul 17;17(1):97. doi: 10.1186/s12938-018-0528-y.
6
7
The influence of load repetition in bone mechanotransduction using poroelastic finite-element models: the impact of permeability.
Biomech Model Mechanobiol. 2014 Jan;13(1):215-25. doi: 10.1007/s10237-013-0498-8. Epub 2013 May 21.
8
Maximum effect of the heterogeneity of tissue mineralization on the effective cortical bone elastic properties.
Biomech Model Mechanobiol. 2021 Aug;20(4):1509-1518. doi: 10.1007/s10237-021-01459-z. Epub 2021 Apr 21.
10
A Chemo-poroelastic Analysis of Mechanically Induced Fluid and Solute Transport in an Osteonal Cortical Bone.
Ann Biomed Eng. 2021 Jan;49(1):299-309. doi: 10.1007/s10439-020-02544-7. Epub 2020 Jun 8.

引用本文的文献

1
Effects on Mass Transfer in the Bone Lacunar-Canalicular System under Different Radial Extracorporeal Shock Waves.
Tissue Eng Regen Med. 2025 Apr;22(3):297-308. doi: 10.1007/s13770-025-00707-y. Epub 2025 Feb 20.
3
Effects of Osteocyte Shape on Fluid Flow and Fluid Shear Stress of the Loaded Bone.
Biomed Res Int. 2022 May 30;2022:3935803. doi: 10.1155/2022/3935803. eCollection 2022.
4
[Research advances of fluid bio-mechanics in bone].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2017 Apr 25;34(2):308-313. doi: 10.7507/1001-5515.201611024.
5
8
Predicting cortical bone adaptation to axial loading in the mouse tibia.
J R Soc Interface. 2015 Sep 6;12(110):0590. doi: 10.1098/rsif.2015.0590.
9
Blood and interstitial flow in the hierarchical pore space architecture of bone tissue.
J Biomech. 2015 Mar 18;48(5):842-54. doi: 10.1016/j.jbiomech.2014.12.013. Epub 2014 Dec 31.

本文引用的文献

2
Advances in assessment of bone porosity, permeability and interstitial fluid flow.
J Biomech. 2013 Jan 18;46(2):253-65. doi: 10.1016/j.jbiomech.2012.10.025. Epub 2012 Nov 19.
3
Variation in osteocyte lacunar morphology and density in the human femur--a synchrotron radiation micro-CT study.
Bone. 2013 Jan;52(1):126-32. doi: 10.1016/j.bone.2012.09.010. Epub 2012 Sep 17.
4
Microarchitecture and bone quality in the human calcaneus: local variations of fabric anisotropy.
J Bone Miner Res. 2012 Dec;27(12):2562-72. doi: 10.1002/jbmr.1710.
5
Alterations in the osteocyte lacunar-canalicular microenvironment due to estrogen deficiency.
Bone. 2012 Sep;51(3):488-97. doi: 10.1016/j.bone.2012.05.014. Epub 2012 May 23.
7
On the paradoxical determinations of the lacuno-canalicular permeability of bone.
Biomech Model Mechanobiol. 2012 Sep;11(7):933-46. doi: 10.1007/s10237-011-0363-6. Epub 2011 Dec 24.
8
Analytical basis for the determination of the lacunar-canalicular permeability of bone using cyclic loading.
Biomech Model Mechanobiol. 2012 Jul;11(6):767-80. doi: 10.1007/s10237-011-0350-y. Epub 2011 Sep 30.
9
Deriving tissue density and elastic modulus from microCT bone scans.
Bone. 2011 Nov;49(5):931-8. doi: 10.1016/j.bone.2011.07.021. Epub 2011 Jul 23.
10
Serial FIB/SEM imaging for quantitative 3D assessment of the osteocyte lacuno-canalicular network.
Bone. 2011 Aug;49(2):304-11. doi: 10.1016/j.bone.2011.04.005. Epub 2011 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验