Suppr超能文献

利用预测性生境模型和模糊逻辑方法进行海洋管理和规划。

The use of a predictive habitat model and a fuzzy logic approach for marine management and planning.

机构信息

UR 03AGRO1 Ecosystèmes et Ressources Aquatiques, INAT (Institut National Agronomique de Tunisie), Tunis, Tunisia ; UMR 212 Ecosystèmes Marins Exploités, IRD (Institut de Recherche pour le Développement), Sète, France.

出版信息

PLoS One. 2013 Oct 11;8(10):e76430. doi: 10.1371/journal.pone.0076430. eCollection 2013.

Abstract

Bottom trawl survey data are commonly used as a sampling technique to assess the spatial distribution of commercial species. However, this sampling technique does not always correctly detect a species even when it is present, and this can create significant limitations when fitting species distribution models. In this study, we aim to test the relevance of a mixed methodological approach that combines presence-only and presence-absence distribution models. We illustrate this approach using bottom trawl survey data to model the spatial distributions of 27 commercially targeted marine species. We use an environmentally- and geographically-weighted method to simulate pseudo-absence data. The species distributions are modelled using regression kriging, a technique that explicitly incorporates spatial dependence into predictions. Model outputs are then used to identify areas that met the conservation targets for the deployment of artificial anti-trawling reefs. To achieve this, we propose the use of a fuzzy logic framework that accounts for the uncertainty associated with different model predictions. For each species, the predictive accuracy of the model is classified as 'high'. A better result is observed when a large number of occurrences are used to develop the model. The map resulting from the fuzzy overlay shows that three main areas have a high level of agreement with the conservation criteria. These results align with expert opinion, confirming the relevance of the proposed methodology in this study.

摘要

底拖网调查数据通常被用作评估商业物种空间分布的抽样技术。然而,即使物种存在,这种抽样技术也并不总是能正确检测到,这在拟合物种分布模型时会产生重大限制。在本研究中,我们旨在测试一种混合方法的相关性,该方法结合了仅存在和存在-不存在分布模型。我们使用底拖网调查数据来说明这种方法,以模拟 27 种商业目标海洋物种的空间分布。我们使用环境和地理加权方法来模拟伪不存在数据。使用回归克里金技术对物种分布进行建模,该技术明确将空间相关性纳入预测中。然后,使用模型输出来确定满足部署人工防拖网礁的保护目标的区域。为此,我们建议使用模糊逻辑框架来考虑与不同模型预测相关的不确定性。对于每个物种,模型的预测准确性被归类为“高”。当使用大量实例来开发模型时,会观察到更好的结果。模糊叠加的地图显示,三个主要区域与保护标准高度一致。这些结果与专家意见一致,证实了本研究中提出的方法的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a08f/3795769/40e915083db8/pone.0076430.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验