Suppr超能文献

利用定点自旋标记法研究脂质体中假定的多药外排泵 EmrD 的结构和 pH 诱导的结构重排。

Structure and pH-induced structural rearrangements of the putative multidrug efflux pump EmrD in liposomes probed by site-directed spin labeling.

机构信息

Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232.

出版信息

Biochemistry. 2013 Nov 12;52(45):7964-74. doi: 10.1021/bi4012385. Epub 2013 Nov 1.

Abstract

EmrD is the only structurally characterized drug/H(+) antiporter of the major facilitator superfamily (MFS). It has been crystallized in a doubly occluded conformation that is considered representative of an intermediate state in the transport cycle of MFS transporters. However, unexpected features of the crystal structure and the lack of functional information available for EmrD limit the utility of the structural data. To assess whether the crystal structure represents a stable state in a native-like environment, we used electron paramagnetic resonance (EPR) spectroscopy to determine the mobility and accessibility of spin labels at 76 positions in six transmembrane (TM) helices of EmrD reconstituted in liposomes. While the EPR data were mostly consistent with the crystal structure, they also revealed significant deviations from the predicted orientation and topology of TM helices at several locations. Additionally, we were unable to reproduce EmrD-dependent multidrug resistance phenotypes in vitro and in cell-based assays of drug transport. In spite of structural and functional discrepancies, we mapped a pH-dependent conformational change in which the cytoplasmic side of the N-terminal half opened locally in response to protonation. This conformational switch is consistent with the expected pH-dependent behavior of MFS H(+)-coupled antiporters.

摘要

EmrD 是主要易化子超家族 (MFS) 中唯一具有结构特征的药物/H(+)反向转运蛋白。它已被结晶为双重闭塞构象,被认为代表 MFS 转运蛋白运输循环中的中间状态。然而,晶体结构的意外特征和缺乏可用的 EmrD 功能信息限制了结构数据的实用性。为了评估晶体结构是否代表天然样环境中的稳定状态,我们使用电子顺磁共振 (EPR) 光谱来确定在脂质体中重建的 EmrD 的六个跨膜 (TM) 螺旋中的 76 个位置的自旋标记的迁移率和可及性。虽然 EPR 数据在大多数情况下与晶体结构一致,但它们也揭示了在几个位置 TM 螺旋的预测取向和拓扑结构存在显着偏差。此外,我们无法在体外和基于细胞的药物转运测定中重现 EmrD 依赖性多药耐药表型。尽管存在结构和功能上的差异,但我们绘制了 pH 依赖性构象变化的图谱,其中 N 端半部分的细胞质侧局部打开以响应质子化。这种构象转换与 MFS H(+) 偶联反向转运蛋白的预期 pH 依赖性行为一致。

相似文献

2
Structure, dynamics, and substrate-induced conformational changes of the multidrug transporter EmrE in liposomes.
J Biol Chem. 2010 Aug 20;285(34):26710-8. doi: 10.1074/jbc.M110.132621. Epub 2010 Jun 15.
3
Simulations of substrate transport in the multidrug transporter EmrD.
Proteins. 2012 Jun;80(6):1620-32. doi: 10.1002/prot.24056. Epub 2012 Mar 20.
5
Inward open characterization of EmrD transporter with molecular dynamics simulation.
Biochem Biophys Res Commun. 2016 Jun 10;474(4):640-645. doi: 10.1016/j.bbrc.2016.04.006. Epub 2016 Apr 4.
8
EPR Techniques to Probe Insertion and Conformation of Spin-Labeled Proteins in Lipid Bilayers.
Methods Mol Biol. 2019;2003:493-528. doi: 10.1007/978-1-4939-9512-7_21.
10
Acidic pH-induced membrane insertion of colicin A into E. coli natural lipids probed by site-directed spin labeling.
J Mol Biol. 2013 May 27;425(10):1782-94. doi: 10.1016/j.jmb.2013.01.037. Epub 2013 Feb 8.

引用本文的文献

1
The role of TMS 12 in the staphylococcal multidrug efflux protein QacA.
J Antimicrob Chemother. 2023 Jun 1;78(6):1522-1531. doi: 10.1093/jac/dkad121.
2
The nucleotide binding affinities of two critical conformations of Escherichia coli ATP synthase.
Arch Biochem Biophys. 2021 Aug 15;707:108899. doi: 10.1016/j.abb.2021.108899. Epub 2021 May 12.
3
Emulating proton-induced conformational changes in the vesicular monoamine transporter VMAT2 by mutagenesis.
Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):E7390-E7398. doi: 10.1073/pnas.1605162113. Epub 2016 Nov 7.
4
Lipids modulate the conformational dynamics of a secondary multidrug transporter.
Nat Struct Mol Biol. 2016 Aug;23(8):744-51. doi: 10.1038/nsmb.3262. Epub 2016 Jul 11.
5
Substrate-bound structure of the E. coli multidrug resistance transporter MdfA.
Cell Res. 2015 Sep;25(9):1060-73. doi: 10.1038/cr.2015.94. Epub 2015 Aug 4.
6
The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria.
Clin Microbiol Rev. 2015 Apr;28(2):337-418. doi: 10.1128/CMR.00117-14.
7
Functionally important carboxyls in a bacterial homologue of the vesicular monoamine transporter (VMAT).
J Biol Chem. 2014 Dec 5;289(49):34229-40. doi: 10.1074/jbc.M114.607366. Epub 2014 Oct 21.

本文引用的文献

1
Protonation drives the conformational switch in the multidrug transporter LmrP.
Nat Chem Biol. 2014 Feb;10(2):149-55. doi: 10.1038/nchembio.1408. Epub 2013 Dec 8.
2
Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14664-9. doi: 10.1073/pnas.1308127110. Epub 2013 Aug 15.
3
Na⁺-substrate coupling in the multidrug antiporter norm probed with a spin-labeled substrate.
Biochemistry. 2013 Aug 27;52(34):5790-9. doi: 10.1021/bi4008935. Epub 2013 Aug 15.
4
Identification of molecular hinge points mediating alternating access in the vesicular monoamine transporter VMAT2.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):E1332-41. doi: 10.1073/pnas.1220497110. Epub 2013 Mar 25.
5
Structural advances for the major facilitator superfamily (MFS) transporters.
Trends Biochem Sci. 2013 Mar;38(3):151-9. doi: 10.1016/j.tibs.2013.01.003. Epub 2013 Feb 8.
6
Dissection of mechanistic principles of a secondary multidrug efflux protein.
Mol Cell. 2012 Sep 14;47(5):777-87. doi: 10.1016/j.molcel.2012.06.018. Epub 2012 Jul 26.
7
Simulations of substrate transport in the multidrug transporter EmrD.
Proteins. 2012 Jun;80(6):1620-32. doi: 10.1002/prot.24056. Epub 2012 Mar 20.
9
The alternating-access mechanism of MFS transporters arises from inverted-topology repeats.
J Mol Biol. 2011 Apr 15;407(5):698-715. doi: 10.1016/j.jmb.2011.02.008. Epub 2011 Feb 18.
10
The structural basis of secondary active transport mechanisms.
Biochim Biophys Acta. 2011 Feb;1807(2):167-88. doi: 10.1016/j.bbabio.2010.10.014. Epub 2010 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验