Martens Chloé, Stein Richard A, Masureel Matthieu, Roth Aurélie, Mishra Smriti, Dawaliby Rosie, Konijnenberg Albert, Sobott Frank, Govaerts Cédric, Mchaourab Hassane S
Department of Chemistry, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium.
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Nat Struct Mol Biol. 2016 Aug;23(8):744-51. doi: 10.1038/nsmb.3262. Epub 2016 Jul 11.
Direct interactions with lipids have emerged as key determinants of the folding, structure and function of membrane proteins, but an understanding of how lipids modulate protein dynamics is still lacking. Here, we systematically explored the effects of lipids on the conformational dynamics of the proton-powered multidrug transporter LmrP from Lactococcus lactis, using the pattern of distances between spin-label pairs previously shown to report on alternating access of the protein. We uncovered, at the molecular level, how the lipid headgroups shape the conformational-energy landscape of the transporter. The model emerging from our data suggests a direct interaction between lipid headgroups and a conserved motif of charged residues that control the conformational equilibrium through an interplay of electrostatic interactions within the protein. Together, our data lay the foundation for a comprehensive model of secondary multidrug transport in lipid bilayers.
与脂质的直接相互作用已成为膜蛋白折叠、结构和功能的关键决定因素,但目前仍缺乏对脂质如何调节蛋白质动力学的理解。在这里,我们利用先前已证明可报告蛋白质交替访问情况的自旋标记对之间的距离模式,系统地探索了脂质对乳酸乳球菌质子驱动的多药转运蛋白LmrP构象动力学的影响。我们在分子水平上揭示了脂质头部基团如何塑造转运蛋白的构象能量景观。从我们的数据中得出的模型表明,脂质头部基团与保守的带电残基基序之间存在直接相互作用,该基序通过蛋白质内部静电相互作用的相互作用来控制构象平衡。总之,我们的数据为脂质双层中次级多药转运的综合模型奠定了基础。