Institute of Basal Medicine, Department of Physiology and Centre of Molecular Biology and Neuroscience, University of Oslo, PB 1104, Blindern, 0317 Oslo, Norway.
Eur J Neurosci. 2014 Jan;39(1):12-23. doi: 10.1111/ejn.12385. Epub 2013 Oct 21.
Spike timing and network synchronization are important for plasticity, development and maturation of brain circuits. Spike delays and timing can be strongly modulated by a low-threshold, slowly inactivating, voltage-gated potassium current called D-current (ID ). ID can delay the onset of spiking, cause temporal integration of multiple inputs, and regulate spike threshold and network synchrony. Recent data indicate that ID can also undergo activity-dependent, homeostatic regulation. Therefore, we have studied the postnatal development of ID -dependent mechanisms in CA1 pyramidal cells in hippocampal slices from young rats (P7-27), using somatic whole-cell recordings. At P21-27, these neurons showed long spike delays and pronounced temporal integration in response to a series of brief depolarizing current pulses or a single long pulse, whereas younger cells (P7-20) showed shorter discharge delays and weak temporal integration, although the spike threshold became increasingly negative with maturation. Application of α-dendrotoxin (α-DTX), which blocks ID , reduced the spiking latency and temporal integration most strongly in mature cells, while shifting the spike threshold most strongly in a depolarizing direction in these cells. Voltage-clamp analysis revealed an α-DTX-sensitive outward current (ID ) that increased in amplitude during development. In contrast to P21-23, ID in the youngest group (P7-9) showed smaller peri-threshold amplitude. This may explain why long discharge delays and robust temporal integration only appear later, 3 weeks postnatally. We conclude that ID properties and ID -dependent functions develop postnatally in rat CA1 pyramidal cells, and ID may modulate network activity and plasticity through its effects on synaptic integration, spike threshold, timing and synchrony.
尖峰定时和网络同步对于大脑回路的可塑性、发育和成熟很重要。尖峰延迟和定时可以通过一种称为 D 电流 (ID ) 的低阈值、缓慢失活的电压门控钾电流强烈调制。ID 可以延迟尖峰的起始,引起多个输入的时间整合,并调节尖峰阈值和网络同步。最近的数据表明,ID 也可以进行活动依赖性的、同型调节。因此,我们使用体细胞核记录,在来自幼鼠 (P7-27) 的海马切片中研究了 CA1 锥体神经元中 ID 依赖性机制的出生后发育。在 P21-27 时,这些神经元对一系列短暂去极化电流脉冲或单个长脉冲表现出长尖峰延迟和明显的时间整合,而年轻细胞 (P7-20) 表现出较短的放电延迟和较弱的时间整合,尽管尖峰阈值随着成熟而变得越来越负。应用α-树突毒素 (α-DTX),阻断 ID ,在成熟细胞中最强地减少尖峰潜伏期和时间整合,而在这些细胞中最强烈地向去极化方向移动尖峰阈值。电压箝位分析显示,α-DTX 敏感的外向电流 (ID ) 在发育过程中幅度增加。与 P21-23 相比,最年轻组 (P7-9) 的 ID 在阈下幅度较小。这可能解释了为什么长放电延迟和强大的时间整合仅在出生后 3 周后才出现。我们得出结论,ID 特性和 ID 依赖性功能在大鼠 CA1 锥体神经元中出生后发育,并且 ID 可能通过其对突触整合、尖峰阈值、定时和同步的影响来调节网络活动和可塑性。