Suppr超能文献

颗粒上层新皮质锥体神经元中Kv1通道的表达及生物物理特性

Expression and biophysical properties of Kv1 channels in supragranular neocortical pyramidal neurones.

作者信息

Guan D, Lee J C F, Tkatch T, Surmeier D J, Armstrong W E, Foehring R C

机构信息

Department of Anatomy and Neurobiology, University of Tennessee, 855 Monroe Avenue, Memphis, TN 38163, USA.

出版信息

J Physiol. 2006 Mar 1;571(Pt 2):371-89. doi: 10.1113/jphysiol.2005.097006. Epub 2005 Dec 22.

Abstract

Potassium channels are extremely diverse regulators of neuronal excitability. As part of an investigation into how this molecular diversity is utilized by neurones, we examined the expression and biophysical properties of native Kv1 channels in layer II/III pyramidal neurones from somatosensory and motor cortex. Single-cell RT-PCR, immunocytochemistry, and whole cell recordings with specific peptide toxins revealed that individual pyramidal cells express multiple Kv1 alpha-subunits. The most abundant subunit mRNAs were Kv1.1 > 1.2 > 1.4 > 1.3. All of these subunits were localized to somatodendritic as well as axonal cell compartments. These data suggest variability in the subunit complexion of Kv1 channels in these cells. The alpha-dendrotoxin (alpha-DTX)-sensitive current activated more rapidly and at more negative potentials than the alpha-DTX-insensitive current, was first observed at voltages near action potential threshold, and was relatively insensitive to holding potential. The alpha-DTX-sensitive current comprised about 10% of outward current at steady-state, in response to steps from -70 mV. From -50 mV, this percentage increased to approximately 20%. All cells expressed an alpha-DTX-sensitive current with slow inactivation kinetics. In some cells a transient component was also present. Deactivation kinetics were voltage dependent, such that deactivation was slow at potentials traversed by interspike intervals during repetitive firing. Because of its kinetics and voltage dependence, the alpha-DTX-sensitive current should be most important at physiological resting potentials and in response to brief stimuli. Kv1 channels should also be important at voltages near threshold and corresponding to interspike intervals.

摘要

钾通道是神经元兴奋性极为多样的调节因子。作为对神经元如何利用这种分子多样性的研究的一部分,我们检测了体感和运动皮层II/III层锥体神经元中天然Kv1通道的表达和生物物理特性。单细胞逆转录聚合酶链反应、免疫细胞化学以及使用特异性肽毒素的全细胞记录显示,单个锥体细胞表达多种Kv1α亚基。最丰富的亚基mRNA为Kv1.1 > 1.2 > 1.4 > 1.3。所有这些亚基均定位于胞体树突以及轴突细胞区室。这些数据表明这些细胞中Kv1通道的亚基组成存在变异性。α-树眼镜蛇毒素(α-DTX)敏感电流比α-DTX不敏感电流激活更快且在更负的电位下激活,首次在接近动作电位阈值的电压下观察到,并且对钳制电位相对不敏感。在稳态下,响应于从-70 mV的阶跃,α-DTX敏感电流约占外向电流的10%。从-50 mV起,该百分比增加到约20%。所有细胞均表达具有缓慢失活动力学的α-DTX敏感电流。在一些细胞中还存在一个瞬态成分。失活动力学是电压依赖性的,使得在重复放电期间峰间间隔所跨越的电位下失活缓慢。由于其动力学和电压依赖性,α-DTX敏感电流在生理静息电位以及对短暂刺激的响应中应该最为重要。Kv1通道在接近阈值以及对应于峰间间隔的电压下也应该很重要。

相似文献

1
Expression and biophysical properties of Kv1 channels in supragranular neocortical pyramidal neurones.
J Physiol. 2006 Mar 1;571(Pt 2):371-89. doi: 10.1113/jphysiol.2005.097006. Epub 2005 Dec 22.
2
Functional roles of Kv1 channels in neocortical pyramidal neurons.
J Neurophysiol. 2007 Mar;97(3):1931-40. doi: 10.1152/jn.00933.2006. Epub 2007 Jan 10.
3
Kv1.2-containing K+ channels regulate subthreshold excitability of striatal medium spiny neurons.
J Neurophysiol. 2004 Mar;91(3):1337-49. doi: 10.1152/jn.00414.2003. Epub 2003 Sep 17.
4
Potassium channels Kv1.1, Kv1.2 and Kv1.6 influence excitability of rat visceral sensory neurons.
J Physiol. 2002 Jun 1;541(Pt 2):467-82. doi: 10.1113/jphysiol.2001.018333.
5
Modulation of excitability by alpha-dendrotoxin-sensitive potassium channels in neocortical pyramidal neurons.
J Neurosci. 2001 Sep 1;21(17):6553-60. doi: 10.1523/JNEUROSCI.21-17-06553.2001.
6
Voltage-gated K+ channels in rat small cerebral arteries: molecular identity of the functional channels.
J Physiol. 2003 Sep 15;551(Pt 3):751-63. doi: 10.1113/jphysiol.2003.040014. Epub 2003 Jun 18.
8
Kv2 subunits underlie slowly inactivating potassium current in rat neocortical pyramidal neurons.
J Physiol. 2007 Jun 15;581(Pt 3):941-60. doi: 10.1113/jphysiol.2007.128454. Epub 2007 Mar 22.
9
Heteromultimeric Kv1 channels contribute to myogenic control of arterial diameter.
Circ Res. 2005 Feb 4;96(2):216-24. doi: 10.1161/01.RES.0000154070.06421.25. Epub 2004 Dec 23.

引用本文的文献

1
2
Characterizing the Diversity of Layer 2/3 Human Neocortical Neurons in Pediatric Epilepsy.
eNeuro. 2025 May 8;12(5). doi: 10.1523/ENEURO.0247-24.2025. Print 2025 May.
3
Seizures and premature death in mice with targeted Kv1.1 deficiency in corticolimbic circuits.
Brain Commun. 2025 Jan 16;7(1):fcae444. doi: 10.1093/braincomms/fcae444. eCollection 2025.
4
Effects of Kv1.3 knockout on pyramidal neuron excitability and synaptic plasticity in piriform cortex of mice.
Acta Pharmacol Sin. 2024 Oct;45(10):2045-2060. doi: 10.1038/s41401-024-01275-y. Epub 2024 Jun 11.
6
The LGI1 protein: molecular structure, physiological functions and disruption-related seizures.
Cell Mol Life Sci. 2021 Dec 30;79(1):16. doi: 10.1007/s00018-021-04088-y.
8

本文引用的文献

1
Dendrotoxins: structure-activity relationships and effects on potassium ion channels.
Curr Med Chem. 2004 Dec;11(23):3065-72. doi: 10.2174/0929867043363820.
2
Properties of single voltage-dependent K+ channels in dendrites of CA1 pyramidal neurones of rat hippocampus.
J Physiol. 2004 Aug 15;559(Pt 1):187-203. doi: 10.1113/jphysiol.2004.068114. Epub 2004 Jun 24.
3
Opioids inhibit lateral amygdala pyramidal neurons by enhancing a dendritic potassium current.
J Neurosci. 2004 Mar 24;24(12):3031-9. doi: 10.1523/JNEUROSCI.4496-03.2004.
5
Kv1.1 and Kv1.3 channels contribute to the delayed-rectifying K+ conductance in rat choroid plexus epithelial cells.
Am J Physiol Cell Physiol. 2004 Mar;286(3):C611-20. doi: 10.1152/ajpcell.00292.2003. Epub 2003 Nov 5.
6
Kv1.2-containing K+ channels regulate subthreshold excitability of striatal medium spiny neurons.
J Neurophysiol. 2004 Mar;91(3):1337-49. doi: 10.1152/jn.00414.2003. Epub 2003 Sep 17.
8
Kinetic analyses of three distinct potassium conductances in ventral cochlear nucleus neurons.
J Neurophysiol. 2003 Jun;89(6):3083-96. doi: 10.1152/jn.00126.2002.
9
Differential expression of three distinct potassium currents in the ventral cochlear nucleus.
J Neurophysiol. 2003 Jun;89(6):3070-82. doi: 10.1152/jn.00125.2002.
10
Presynaptic rat Kv1.2 channels suppress synaptic terminal hyperexcitability following action potential invasion.
J Physiol. 2003 Jul 1;550(Pt 1):27-33. doi: 10.1113/jphysiol.2003.046250. Epub 2003 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验