The MOE Key Laboratory of Weak-Light Nonlinear Photonics, Tianjin Key Laboratory of Photonics and Technology, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin 300457, China.
Nanoscale Res Lett. 2013 Oct 22;8(1):437. doi: 10.1186/1556-276X-8-437.
Noble metal nanogap structure supports strong surface-enhanced Raman scattering (SERS) which can be used to detect single molecules. However, the lack of reproducible fabrication techniques with nanometer-level control over the gap size has limited practical applications. In this letter, by depositing the Au film onto the cicada wing, we engineer the ordered array of nanopillar structures on the wing to form large-area high-performance SERS substrates. Through the control of the thickness of the Au film deposited onto the cicada wing, the gap sizes between neighboring nanopillars are fine defined. SERS substrates with sub-10-nm gap sizes are obtained, which have the highest average Raman enhancement factor (EF) larger than 2 × 108, about 40 times as large as that of commercial Klarite® substrates. The cicada wings used as templates are natural and environment-friendly. The depositing method is low cost and high throughput so that our large-area high-performance SERS substrates have great advantage for chemical/biological sensing applications.
贵金属纳米间隙结构支持强的表面增强拉曼散射(SERS),可用于检测单分子。然而,缺乏具有纳米级间隙尺寸可控的可重复制造技术限制了其实际应用。在这封信件中,我们通过在蝉翼上沉积 Au 膜,在翼上工程化了有序的纳米柱结构阵列,以形成大面积高性能 SERS 基底。通过控制沉积在蝉翼上的 Au 膜的厚度,可以精细定义相邻纳米柱之间的间隙尺寸。获得了具有亚 10nm 间隙尺寸的 SERS 基底,其平均 Raman 增强因子(EF)最高大于 2×108,约为商业 Klarite®基底的 40 倍。所使用的蝉翼模板是天然的、环保的。沉积方法成本低、产量高,因此我们的大面积高性能 SERS 基底在化学/生物传感应用方面具有很大的优势。