Suppr超能文献

稳健回归和后验预测模拟提高了检测特征进化早期爆发的能力。

Robust regression and posterior predictive simulation increase power to detect early bursts of trait evolution.

机构信息

Department of Ecology and Evolutionary Biology, University of California Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095-7239, USA; Department of Paleobiology & Division of Mammals, National Museum of Natural History, Smithsonian Institution, MRC 121, PO Box 37012, Washington, DC., 20013-7012, USA; Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 441D Life Sciences South, PO Box 443051, Moscow, ID, 83844-3051, USA; and National Evolutionary Synthesis Center, 2024 W. Main Street, Suite A200, Durham, NC, 27705-4667, USA.

出版信息

Syst Biol. 2014 May;63(3):293-308. doi: 10.1093/sysbio/syt066. Epub 2013 Oct 22.

Abstract

A central prediction of much theory on adaptive radiations is that traits should evolve rapidly during the early stages of a clade's history and subsequently slowdown in rate as niches become saturated--a so-called "Early Burst." Although a common pattern in the fossil record, evidence for early bursts of trait evolution in phylogenetic comparative data has been equivocal at best. We show here that this may not necessarily be due to the absence of this pattern in nature. Rather, commonly used methods to infer its presence perform poorly when when the strength of the burst--the rate at which phenotypic evolution declines--is small, and when some morphological convergence is present within the clade. We present two modifications to existing comparative methods that allow greater power to detect early bursts in simulated datasets. First, we develop posterior predictive simulation approaches and show that they outperform maximum likelihood approaches at identifying early bursts at moderate strength. Second, we use a robust regression procedure that allows for the identification and down-weighting of convergent taxa, leading to moderate increases in method performance. We demonstrate the utility and power of these approach by investigating the evolution of body size in cetaceans. Model fitting using maximum likelihood is equivocal with regards the mode of cetacean body size evolution. However, posterior predictive simulation combined with a robust node height test return low support for Brownian motion or rate shift models, but not the early burst model. While the jury is still out on whether early bursts are actually common in nature, our approach will hopefully facilitate more robust testing of this hypothesis. We advocate the adoption of similar posterior predictive approaches to improve the fit and to assess the adequacy of macroevolutionary models in general.

摘要

一个适应辐射理论的核心预测是,在一个分支的历史早期,特征应该快速进化,随后随着生态位的饱和,进化速度会减缓——这就是所谓的“早期爆发”。虽然这是化石记录中的常见模式,但在系统发育比较数据中,特征进化早期爆发的证据充其量也是模棱两可的。我们在这里表明,这可能不一定是因为这种模式在自然界中不存在。相反,当爆发的强度——表型进化下降的速度——很小时,并且分支内存在一些形态趋同,常用的推断其存在的方法的性能就会很差。我们提出了两种对现有比较方法的修改,这使得在模拟数据集中检测早期爆发的能力更强。首先,我们开发了后验预测模拟方法,并表明它们在识别中等强度的早期爆发方面优于最大似然方法。其次,我们使用稳健回归程序来识别和减轻趋同类群的影响,从而适度提高方法性能。我们通过研究鲸目动物的体型进化来证明这些方法的实用性和有效性。使用最大似然法进行模型拟合对于鲸目动物体型进化的模式是不确定的。然而,后验预测模拟与稳健节点高度检验相结合,对布朗运动或速率转换模型的支持度较低,但对早期爆发模型的支持度较高。虽然早期爆发实际上是否在自然界中普遍存在还有待讨论,但我们的方法有望促进对这一假设更稳健的检验。我们主张采用类似的后验预测方法来改善拟合度,并评估宏观进化模型的充分性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验