Department of Biochemistry and ‡Department of Chemistry, Stanford University , Stanford, California 94305, United States.
Biochemistry. 2013 Nov 5;52(44):7840-55. doi: 10.1021/bi401083b. Epub 2013 Oct 23.
Within the idiosyncratic enzyme active-site environment, side chain and ligand pKa values can be profoundly perturbed relative to their values in aqueous solution. Whereas structural inspection of systems has often attributed perturbed pKa values to dominant contributions from placement near charged groups or within hydrophobic pockets, Tyr57 of a Pseudomonas putida ketosteroid isomerase (KSI) mutant, suggested to have a pKa perturbed by nearly 4 units to 6.3, is situated within a solvent-exposed active site devoid of cationic side chains, metal ions, or cofactors. Extensive comparisons among 45 variants with mutations in and around the KSI active site, along with protein semisynthesis, (13)C NMR spectroscopy, absorbance spectroscopy, and X-ray crystallography, was used to unravel the basis for this perturbed Tyr pKa. The results suggest that the origin of large energetic perturbations are more complex than suggested by visual inspection. For example, the introduction of positively charged residues near Tyr57 raises its pKa rather than lowers it; this effect, and part of the increase in the Tyr pKa from the introduction of nearby anionic groups, arises from accompanying active-site structural rearrangements. Other mutations with large effects also cause structural perturbations or appear to displace a structured water molecule that is part of a stabilizing hydrogen-bond network. Our results lead to a model in which three hydrogen bonds are donated to the stabilized ionized Tyr, with these hydrogen-bond donors, two Tyr side chains, and a water molecule positioned by other side chains and by a water-mediated hydrogen-bond network. These results support the notion that large energetic effects are often the consequence of multiple stabilizing interactions rather than a single dominant interaction. Most generally, this work provides a case study for how extensive and comprehensive comparisons via site-directed mutagenesis in a tight feedback loop with structural analysis can greatly facilitate our understanding of enzyme active-site energetics. The extensive data set provided may also be a valuable resource for those wishing to extensively test computational approaches for determining enzymatic pKa values and energetic effects.
在独特的酶活性部位环境中,侧链和配体的 pKa 值相对于它们在水溶液中的值可能会受到极大的干扰。虽然对系统的结构检查通常将扰动的 pKa 值归因于靠近带电基团或在疏水口袋内的位置的主要贡献,但假单胞菌酮甾体异构酶(KSI)突变体中的 Tyr57 被认为其 pKa 值受到近 4 个单位的干扰,达到 6.3,位于没有阳离子侧链、金属离子或辅因子的溶剂暴露的活性部位内。通过对 KSI 活性部位内和周围的 45 个变体进行广泛比较,以及蛋白质半合成、(13)C NMR 光谱、吸光度光谱和 X 射线晶体学,揭示了这种扰动 Tyr pKa 的基础。结果表明,大能量干扰的起源比视觉检查所表明的更为复杂。例如,在 Tyr57 附近引入带正电荷的残基会提高其 pKa 值,而不是降低其 pKa 值;这种效应以及由于引入附近的阴离子基团而导致 Tyr pKa 增加的一部分,是由于伴随的活性部位结构重排引起的。其他具有较大影响的突变也会引起结构扰动,或者似乎会置换处于稳定氢键网络一部分的结构化水分子。我们的结果导致了一种模型,其中三个氢键被捐赠给稳定的离子化 Tyr,这些氢键供体、两个 Tyr 侧链和一个水分子由其他侧链和通过水介导的氢键网络定位。这些结果支持了这样的观点,即大的能量效应通常是多个稳定相互作用的结果,而不是单一主导相互作用的结果。最普遍的是,这项工作为通过在紧密反馈循环中进行广泛和全面的基于定向突变的结构分析如何极大地促进我们对酶活性部位能量学的理解提供了一个案例研究。提供的广泛数据集也可能是那些希望广泛测试用于确定酶 pKa 值和能量效应的计算方法的人有价值的资源。