Suppr超能文献

多杀巴斯德氏菌 N-乙酰-D-神经氨酸裂解酶的底物特异性和机制的结构基础。

Structural basis for substrate specificity and mechanism of N-acetyl-D-neuraminic acid lyase from Pasteurella multocida.

机构信息

Department of Chemistry, ‡Department of Molecular and Cellular Biology, and §Cell Biology Graduate Program, University of California , One Shields Avenue, Davis, California 95616, United States.

出版信息

Biochemistry. 2013 Nov 26;52(47):8570-9. doi: 10.1021/bi4011754. Epub 2013 Nov 11.

Abstract

N-Acetylneuraminate lyases (NALs) or sialic acid aldolases catalyze the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac, the most common form of sialic acid) to form pyruvate and N-acetyl-d-mannosamine. Although equilibrium favors sialic acid cleavage, these enzymes can be used for high-yield chemoenzymatic synthesis of structurally diverse sialic acids in the presence of excess pyruvate. Engineering these enzymes to synthesize structurally modified natural sialic acids and their non-natural derivatives holds promise in creating novel therapeutic agents. Atomic-resolution structures of these enzymes will greatly assist in guiding mutagenic and modeling studies to engineer enzymes with altered substrate specificity. We report here the crystal structures of wild-type Pasteurella multocida N-acetylneuraminate lyase and its K164A mutant. Like other bacterial lyases, it assembles into a homotetramer with each monomer folding into a classic (β/α)₈ TIM barrel. Two wild-type structures were determined, in the absence of substrates, and trapped in a Schiff base intermediate between Lys164 and pyruvate, respectively. Three structures of the K164A variant were determined: one in the absence of substrates and two binary complexes with N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Both sialic acids bind to the active site in the open-chain ketone form of the monosaccharide. The structures reveal that every hydroxyl group of the linear sugars makes hydrogen bond interactions with the enzyme, and the residues that determine specificity were identified. Additionally, the structures provide some clues for explaining the natural discrimination of sialic acid substrates between the P. multocida and Escherichia coli NALs.

摘要

N-乙酰神经氨酸裂解酶(NALs)或唾液酸醛缩酶催化 N-乙酰神经氨酸(Neu5Ac,最常见的唾液酸形式)的可逆醛裂解,形成丙酮酸和 N-乙酰-D-甘露糖胺。尽管平衡有利于唾液酸的裂解,但在过量丙酮酸存在下,这些酶可用于高收率的化学酶促合成结构多样的唾液酸。对这些酶进行工程改造,以合成结构修饰的天然唾液酸及其非天然衍生物,有望创造新型治疗剂。这些酶的原子分辨率结构将极大地帮助指导诱变和建模研究,以工程改造具有改变的底物特异性的酶。我们在此报告野生型多杀巴斯德氏菌 N-乙酰神经氨酸裂解酶及其 K164A 突变体的晶体结构。与其他细菌裂解酶一样,它组装成一个同源四聚体,每个单体折叠成一个经典的(β/α)₈ TIM 桶。分别确定了两个野生型结构,一个在没有底物的情况下,另一个在 Lys164 和丙酮酸之间的席夫碱中间体中被捕获。还确定了 K164A 变体的三个结构:一个在没有底物的情况下,另外两个与 N-乙酰神经氨酸(Neu5Ac)和 N-羟乙酰神经氨酸(Neu5Gc)的二元复合物。两种唾液酸都以单糖的开链酮形式结合到活性位点。结构揭示了线性糖的每个羟基都与酶形成氢键相互作用,并确定了决定特异性的残基。此外,这些结构为解释多杀巴斯德氏菌和大肠杆菌 NAL 之间唾液酸底物的天然选择性提供了一些线索。

相似文献

1
Structural basis for substrate specificity and mechanism of N-acetyl-D-neuraminic acid lyase from Pasteurella multocida.
Biochemistry. 2013 Nov 26;52(47):8570-9. doi: 10.1021/bi4011754. Epub 2013 Nov 11.
2
Pasteurella multocida sialic acid aldolase: a promising biocatalyst.
Appl Microbiol Biotechnol. 2008 Jul;79(6):963-70. doi: 10.1007/s00253-008-1506-2. Epub 2008 Jun 3.
3
Molecular characterization of a novel N-acetylneuraminate lyase from Lactobacillus plantarum WCFS1.
Appl Environ Microbiol. 2011 Apr;77(7):2471-8. doi: 10.1128/AEM.02927-10. Epub 2011 Feb 11.
4
Crystal structures and kinetics of N-acetylneuraminate lyase from Fusobacterium nucleatum.
Acta Crystallogr F Struct Biol Commun. 2018 Nov 1;74(Pt 11):725-732. doi: 10.1107/S2053230X18012992. Epub 2018 Oct 17.
6
Cloning, expression, purification, crystallization and preliminary X-ray diffraction studies of N-acetylneuraminate lyase from methicillin-resistant Staphylococcus aureus.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Mar 1;69(Pt 3):306-12. doi: 10.1107/S1744309113003060. Epub 2013 Feb 27.
7
Features and structure of a cold active N-acetylneuraminate lyase.
PLoS One. 2019 Jun 11;14(6):e0217713. doi: 10.1371/journal.pone.0217713. eCollection 2019.
9
The three-dimensional structure of N-acetylneuraminate lyase from Escherichia coli.
Structure. 1994 May 15;2(5):361-9. doi: 10.1016/s0969-2126(00)00038-1.

引用本文的文献

1
Structure and function of bacterial transcription regulators of the SorC family.
Transcription. 2024 Jun-Oct;15(3-5):139-160. doi: 10.1080/21541264.2024.2387895. Epub 2024 Sep 3.
2
Many locks to one key: N-acetylneuraminic acid binding to proteins.
IUCrJ. 2024 Sep 1;11(Pt 5):664-674. doi: 10.1107/S2052252524005360.
3
Enabling Chemoenzymatic Strategies and Enzymes for Synthesizing Sialyl Glycans and Sialyl Glycoconjugates.
Acc Chem Res. 2024 Jan 16;57(2):234-246. doi: 10.1021/acs.accounts.3c00614. Epub 2023 Dec 21.
5
Features and structure of a cold active N-acetylneuraminate lyase.
PLoS One. 2019 Jun 11;14(6):e0217713. doi: 10.1371/journal.pone.0217713. eCollection 2019.
6
Crystal structures and kinetics of N-acetylneuraminate lyase from Fusobacterium nucleatum.
Acta Crystallogr F Struct Biol Commun. 2018 Nov 1;74(Pt 11):725-732. doi: 10.1107/S2053230X18012992. Epub 2018 Oct 17.

本文引用的文献

2
Sialic acid catabolism in Staphylococcus aureus.
J Bacteriol. 2013 Apr;195(8):1779-88. doi: 10.1128/JB.02294-12. Epub 2013 Feb 8.
3
Sialic acid metabolism and sialyltransferases: natural functions and applications.
Appl Microbiol Biotechnol. 2012 May;94(4):887-905. doi: 10.1007/s00253-012-4040-1. Epub 2012 Apr 13.
4
Chemoenzymatic synthesis of C8-modified sialic acids and related α2-3- and α2-6-linked sialosides.
Bioorg Med Chem Lett. 2011 Sep 1;21(17):5037-40. doi: 10.1016/j.bmcl.2011.04.083. Epub 2011 Apr 24.
5
Human xeno-autoantibodies against a non-human sialic acid serve as novel serum biomarkers and immunotherapeutics in cancer.
Cancer Res. 2011 May 1;71(9):3352-63. doi: 10.1158/0008-5472.CAN-10-4102. Epub 2011 Apr 19.
6
REFMAC5 for the refinement of macromolecular crystal structures.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67. doi: 10.1107/S0907444911001314. Epub 2011 Mar 18.
7
Structural insights into substrate specificity in variants of N-acetylneuraminic Acid lyase produced by directed evolution.
J Mol Biol. 2010 Nov 19;404(1):56-69. doi: 10.1016/j.jmb.2010.08.008. Epub 2010 Sep 6.
8
Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid.
J Exp Med. 2010 Aug 2;207(8):1637-46. doi: 10.1084/jem.20100575. Epub 2010 Jul 12.
9
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
10
Advances in the biology and chemistry of sialic acids.
ACS Chem Biol. 2010 Feb 19;5(2):163-76. doi: 10.1021/cb900266r.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验