Animal Evolution and Development, Institute of Biology, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany.
BMC Evol Biol. 2013 Oct 24;13:230. doi: 10.1186/1471-2148-13-230.
Although molecular analyses have contributed to a better resolution of the animal tree of life, the phylogenetic position of tardigrades (water bears) is still controversial, as they have been united alternatively with nematodes, arthropods, onychophorans (velvet worms), or onychophorans plus arthropods. Depending on the hypothesis favoured, segmental ganglia in tardigrades and arthropods might either have evolved independently, or they might well be homologous, suggesting that they were either lost in onychophorans or are a synapomorphy of tardigrades and arthropods. To evaluate these alternatives, we analysed the organisation of the nervous system in three tardigrade species using antisera directed against tyrosinated and acetylated tubulin, the amine transmitter serotonin, and the invertebrate neuropeptides FMRFamide, allatostatin and perisulfakinin. In addition, we performed retrograde staining of nerves in the onychophoran Euperipatoides rowelli in order to compare the serial locations of motor neurons within the nervous system relative to the appendages they serve in arthropods, tardigrades and onychophorans.
Contrary to a previous report from a Macrobiotus species, our immunocytochemical and electron microscopic data revealed contralateral fibres and bundles of neurites in each trunk ganglion of three tardigrade species, including Macrobiotus cf. harmsworthi, Paramacrobiotus richtersi and Hypsibius dujardini. Moreover, we identified additional, extra-ganglionic commissures in the interpedal regions bridging the paired longitudinal connectives. Within the ganglia we found serially repeated sets of serotonin- and RFamid-like immunoreactive neurons. Furthermore, our data show that the trunk ganglia of tardigrades, which include the somata of motor neurons, are shifted anteriorly with respect to each corresponding leg pair, whereas no such shift is evident in the arrangement of motor neurons in the onychophoran nerve cords.
Taken together, these data reveal three major correspondences between the segmental ganglia of tardigrades and arthropods, including (i) contralateral projections and commissures in each ganglion, (ii) segmentally repeated sets of immunoreactive neurons, and (iii) an anteriorly shifted (parasegmental) position of ganglia. These correspondences support the homology of segmental ganglia in tardigrades and arthropods, suggesting that these structures were either lost in Onychophora or, alternatively, evolved in the tardigrade/arthropod lineage.
尽管分子分析有助于更好地解析动物的生命树,但缓步动物(水熊)的系统发育位置仍然存在争议,因为它们曾被分别归入线虫、节肢动物、有爪动物(缨尾目)或有爪动物加节肢动物。根据受青睐的假说,缓步动物和节肢动物的节段性神经节可能是独立进化的,也可能是同源的,这表明它们要么在有爪动物中丢失了,要么是缓步动物和节肢动物的共衍征。为了评估这些替代方案,我们使用针对酪氨酸化和乙酰化微管蛋白、胺递质血清素以及无脊椎动物神经肽 FMRFamide、allatostatin 和 perisulfakinin 的抗血清,分析了三种缓步动物物种的神经系统组织。此外,我们对有爪动物 Euperipatoides rowelli 的神经进行逆行染色,以便比较它们在节肢动物、缓步动物和有爪动物中相对于所服务的附肢的神经内的运动神经元的串联位置。
与之前来自 Macrobiotus 物种的报告相反,我们的免疫细胞化学和电子显微镜数据显示,在包括 Macrobiotus cf. harmsworthi、Paramacrobiotus richtersi 和 Hypsibius dujardini 在内的三种缓步动物物种的每个躯干神经节中都存在对侧纤维和神经束。此外,我们在足间区域发现了额外的、神经节外的神经联络,连接成对的纵连合。在神经节中,我们发现了重复出现的血清素和 RFamid 样免疫反应性神经元组。此外,我们的数据表明,包括运动神经元体的缓步动物躯干神经节相对于每对相应的腿对向前移位,而在有爪动物神经索中运动神经元的排列则没有明显的移位。
综上所述,这些数据揭示了缓步动物和节肢动物的节段性神经节之间的三个主要对应关系,包括(i)每个神经节中的对侧投射和神经联络,(ii)重复出现的免疫反应性神经元组,以及(iii)神经节的向前移位(副节段)位置。这些对应关系支持缓步动物和节肢动物的节段性神经节的同源性,表明这些结构要么在有爪动物中丢失了,要么是在缓步动物/节肢动物谱系中进化而来的。