Suppr超能文献

电动力学在共溶剂中调节蛋白质稳定性。

Electrodynamic pressure modulation of protein stability in cosolvents.

机构信息

Department of Food Science, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.

出版信息

Biochemistry. 2013 Nov 19;52(46):8363-73. doi: 10.1021/bi400656a. Epub 2013 Nov 7.

Abstract

Cosolvents affect structural stability of proteins in aqueous solutions. A clear understanding of the mechanism by which cosolvents impact protein stability is critical to understanding protein folding in a biological milieu. In this study, we investigated the Lifshitz-van der Waals dispersion interaction of seven different solutes with nine globular proteins and report that in an aqueous medium the structure-stabilizing solutes exert a positive electrodynamic pressure, whereas the structure-destabilizing solutes exert a negative electrodynamic pressure on the proteins. The net increase in the thermal denaturation temperature (ΔTd) of a protein in 1 M solution of various solutes was linearly related to the electrodynamic pressure (PvdW) between the solutes and the protein. The slope of the PvdW versus ΔTd plots was protein-dependent. However, we find a positive linear relationship (r(2) = 0.79) between the slope (i.e., d(ΔTd)/dPvdW) and the adiabatic compressibility (βs) of the proteins. Together, these results clearly indicate that the Lifshitz's dispersion forces are inextricably involved in solute-induced stabilization/destabilization of globular proteins. The positive and/or negative electrodynamic pressure generated by the solute-protein interaction across the water medium seems to be the fundamental mechanism by which solutes affect protein stability. This is at variance with the existing preferential hydration concept. The implication of these results is significant in the sense that, in addition to the hydrophobic effect that drives protein folding, the electrodynamic forces between the proteins and solutes in the biological milieu also might play a role in the folding process as well as in the stability of the folded state.

摘要

共溶剂会影响蛋白质在水溶液中的结构稳定性。因此,深入理解共溶剂影响蛋白质稳定性的机制对于理解生物环境中蛋白质的折叠过程至关重要。在这项研究中,我们研究了七种不同溶质与九种球形蛋白质之间的 Lifshitz-van der Waals 色散相互作用,并报告在水介质中,结构稳定化溶剂会对蛋白质施加正电动压力,而结构破坏化溶剂则会对蛋白质施加负电动压力。在各种溶质的 1 M 溶液中,蛋白质的热变性温度(ΔTd)的净增加与溶质和蛋白质之间的电动压力(PvdW)呈线性相关。PvdW 与 ΔTd 曲线的斜率与蛋白质有关。然而,我们发现斜率(即 d(ΔTd)/dPvdW)与蛋白质的绝热压缩率(βs)之间存在正线性关系(r²=0.79)。这些结果清楚地表明,Lifshitz 的色散力与溶质诱导球形蛋白质的稳定/失稳密切相关。溶质-蛋白质相互作用在水介质中产生的正电动压力和/或负电动压力似乎是溶质影响蛋白质稳定性的基本机制。这与现有的优先水合概念不同。这些结果的意义在于,除了驱动蛋白质折叠的疏水作用之外,生物环境中蛋白质和溶质之间的电动力也可能在折叠过程以及折叠态的稳定性中发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验