Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan; Department of Clinical Chemistry, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075 Goettingen, Germany.
Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan.
Neuroscience. 2014 Jan 3;256:126-36. doi: 10.1016/j.neuroscience.2013.10.026. Epub 2013 Oct 22.
Numerous studies have provided evidence regarding the involvement of protein S-nitrosylation in the progression of Alzheimer's disease (AD) pathology and its implication in the formation and accumulation of misfolded protein aggregates. The identification of S-nitrosylated proteins can be a major step toward the understanding of mechanisms leading to neuronal degeneration. The present study targeted S-nitrosylated proteins in AD hippocampus, substantia nigra and cortex using the following work-flow that combines S-nitrosothiol-specific antibody detection, classical biotin switch method labeled with fluorescence dye followed by electrospray ionization quadrupole time of flight tandem MS (ESI-QTOF MS/MS) identification. Endogenous nitrosocysteines were identified in 45 proteins, mainly involved in metabolism, signaling pathways, apoptosis and redox regulation as assigned by REACTOME and KEGG pathway database analysis. Superoxide dismutase (SOD2) [Mn], fructose-bisphosphate aldolase C (ALDOC) and voltage-dependent anion-selective channel protein 2 (VDAC2) showed differential S-nitrosylation signal, not previously reported in AD regions. Extensive neuronal atrophy with increased protein S-nitrosylation in AD regions is also evident from immunofluorescence studies using S-nitrosocysteine antibody. A number of plausible cysteine modification sites were predicted via Group-based Prediction System-S-nitrosothiols (GPS-SNO) 1.0 while STRING 8.3 analysis revealed functional annotations in the modified proteins. The findings are helpful in characterization of functional abnormalities and may facilitate the understanding of molecular mechanisms and biological function of S-nitrosylation in AD pathology.
已有大量研究为阿尔茨海默病(AD)病理进展中蛋白 S-亚硝基化的作用提供了证据,并表明其与错误折叠蛋白聚集体的形成和积累有关。鉴定 S-亚硝基化蛋白可能是理解导致神经元变性的机制的重要步骤。本研究使用以下工作流程针对 AD 海马体、黑质和皮质中的 S-亚硝基化蛋白,该流程结合了 S-亚硝基硫醇特异性抗体检测、用荧光染料标记的经典生物素开关方法,随后进行电喷雾电离四极杆飞行时间串联质谱(ESI-QTOF MS/MS)鉴定。通过 REACTOME 和 KEGG 途径数据库分析,鉴定出 45 种主要参与代谢、信号通路、细胞凋亡和氧化还原调节的内源性亚硝酰半胱氨酸(nitrosocysteine)蛋白。超氧化物歧化酶 2(SOD2)[Mn]、果糖二磷酸醛缩酶 C(ALDOC)和电压依赖性阴离子选择通道蛋白 2(VDAC2)显示出与 AD 区域中先前未报道的差异 S-亚硝基化信号。使用 S-亚硝酰半胱氨酸抗体进行免疫荧光研究也表明,AD 区域的神经元广泛萎缩,伴有蛋白质 S-亚硝基化增加。通过 Group-based Prediction System-S-nitrosothiols(GPS-SNO)1.0 预测了许多可能的半胱氨酸修饰位点,而 STRING 8.3 分析则揭示了修饰蛋白的功能注释。这些发现有助于对功能异常进行特征描述,并可能有助于理解 AD 病理学中 S-亚硝基化的分子机制和生物学功能。