Max-Planck Institut für Eisenforschung GmbH, Max-Planck str. 1, 40237 Düsseldorf, Germany.
J Chem Phys. 2013 Oct 21;139(15):154102. doi: 10.1063/1.4824768.
A novel hybrid approach combining dissipative particle dynamics (DPD) and finite difference (FD) solution of partial differential equations is proposed to simulate complex reaction-diffusion phenomena in heterogeneous systems. DPD is used for the detailed molecular modeling of mass transfer, chemical reactions, and phase separation near the liquid∕liquid interface, while FD approach is applied to describe the large-scale diffusion of reactants outside the reaction zone. A smooth, self-consistent procedure of matching the solute concentration is performed in the buffer region between the DPD and FD domains. The new model is tested on a simple model system admitting an analytical solution for the diffusion controlled regime and then applied to simulate practically important heterogeneous processes of (i) reactive coupling between immiscible end-functionalized polymers and (ii) interfacial polymerization of two monomers dissolved in immiscible solvents. The results obtained due to extending the space and time scales accessible to modeling provide new insights into the kinetics and mechanism of those processes and demonstrate high robustness and accuracy of the novel technique.
提出了一种新的混合方法,结合耗散粒子动力学(DPD)和偏微分方程的有限差分(FD)解,以模拟多相体系中复杂的反应扩散现象。DPD 用于模拟靠近液-液界面的传质、化学反应和相分离的详细分子建模,而 FD 方法则用于描述反应区外反应物的大规模扩散。在 DPD 和 FD 区域之间的缓冲区域中执行溶质浓度的平滑、自洽匹配过程。新模型在具有扩散控制模式解析解的简单模型系统上进行了测试,然后应用于模拟(i)不相容端官能化聚合物之间的反应偶联和(ii)两种单体在不相容溶剂中溶解的界面聚合这两种实际重要的多相过程。由于扩展了建模可达到的空间和时间尺度,所得结果为这些过程的动力学和机制提供了新的见解,并证明了新方法的高稳健性和准确性。