Suppr超能文献

计算机辅助结构鉴定 (CASI)——一种通过二维气相色谱-质谱联用进行高通量小分子鉴定的自动化平台。

Computer-assisted structure identification (CASI)--an automated platform for high-throughput identification of small molecules by two-dimensional gas chromatography coupled to mass spectrometry.

机构信息

Philip Morris International R&D , Philip Morris Products S.A., 2000 Neuchâtel, Switzerland.

出版信息

Anal Chem. 2013 Dec 3;85(23):11216-24. doi: 10.1021/ac4011952. Epub 2013 Nov 11.

Abstract

Compound identification is widely recognized as a major bottleneck for modern metabolomic approaches and high-throughput nontargeted characterization of complex matrices. To tackle this challenge, an automated platform entitled computer-assisted structure identification (CASI) was designed and developed in order to accelerate and standardize the identification of compound structures. In the first step of the process, CASI automatically searches mass spectral libraries for matches using a NIST MS Search algorithm, which proposes structural candidates for experimental spectra from two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC-TOF-MS) measurements, each with an associated match factor. Next, quantitative structure-property relationship (QSPR) models implemented in CASI predict three specific parameters to enhance the confidence for correct compound identification, which were Kovats Index (KI) for the first dimension (1D) separation, relative retention time for the second dimension separation (2DrelRT) and boiling point (BP). In order to reduce the impact of chromatographic variability on the second dimension retention time, a concept based upon hypothetical reference points from linear regressions of a deuterated n-alkanes reference system was introduced, providing a more stable relative retention time measurement. Predicted values for KI and 2DrelRT were calculated and matched with experimentally derived values. Boiling points derived from 1D separations were matched with predicted boiling points, calculated from the chemical structures of the candidates. As a last step, CASI combines the NIST MS Search match factors (NIST MF) with up to three predicted parameter matches from the QSPR models to generate a combined CASI Score representing the measure of confidence for the identification. Threshold values were applied to the CASI Scores assigned to proposed structures, which improved the accuracy for the classification of true/false positives and true/false negatives. Results for the identification of compounds have been validated, and it has been demonstrated that identification using CASI is more accurate than using NIST MS Search alone. CASI is an easily accessible web-interfaced software platform which represents an innovative, high-throughput system that allows fast and accurate identification of constituents in complex matrices, such as those requiring 2D separation techniques.

摘要

化合物鉴定是现代代谢组学方法和高通量非靶向复杂基质特征描述的主要瓶颈。为了应对这一挑战,设计并开发了一个名为计算机辅助结构鉴定(CASI)的自动化平台,以加速和标准化化合物结构的鉴定。在该过程的第一步中,CASI 使用 NIST MS Search 算法自动搜索质谱库中的匹配项,该算法为二维气相色谱-飞行时间质谱(GC×GC-TOF-MS)测量的实验光谱提出结构候选者,每个候选者都有一个相关的匹配因子。接下来,CASI 中实现的定量构效关系(QSPR)模型预测三个特定参数,以增强正确化合物鉴定的置信度,这三个参数分别是第一维(1D)分离的科瓦茨指数(KI)、第二维分离的相对保留时间(2DrelRT)和沸点(BP)。为了减少色谱变异性对第二维保留时间的影响,引入了基于氘代正构烷烃参考系统线性回归假设参考点的概念,提供了更稳定的相对保留时间测量。计算并匹配预测的 KI 和 2DrelRT 值与实验得出的值。从 1D 分离得出的沸点与从候选者的化学结构计算得出的预测沸点相匹配。最后,CASI 将 NIST MS Search 匹配因子(NIST MF)与来自 QSPR 模型的最多三个预测参数匹配相结合,生成代表鉴定置信度的综合 CASI 得分。将阈值应用于分配给提议结构的 CASI 得分,提高了真/假阳性和真/假阴性分类的准确性。已经验证了化合物鉴定的结果,并且已经证明使用 CASI 进行鉴定比单独使用 NIST MS Search 更准确。CASI 是一个易于访问的网络界面软件平台,代表了一种创新的高通量系统,允许快速准确地识别复杂基质中的成分,例如需要二维分离技术的基质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验