Program in Neuroscience, Department of Integrative Physiology and Neuroscience, ‡WWAMI Medical Education Program, and §Center for Integrated Biotechnology, Washington State University , P.O. Box 647620, Pullman, Washington 99164, United States.
Biochemistry. 2013 Nov 19;52(46):8352-62. doi: 10.1021/bi400824x. Epub 2013 Nov 11.
Cyclic-nucleotide gated (CNG) channels are essential for phototransduction within retinal photoreceptors. We have demonstrated previously that the enzymatic activity of matrix metalloproteinase-2 and -9, members of the matrix metalloproteinase (MMP) family of extracellular, Ca(2+)- and Zn(2+)-dependent proteases, enhances the ligand sensitivity of both rod (CNGA1 and CNGB1) and cone (CNGA3 and CNGB3) CNG channels. Additionally, we have observed a decrease in the maximal CNG channel current (Imax) that begins late during MMP-directed gating changes. Here we demonstrate that CNG channels become nonconductive after prolonged MMP exposure. Concurrent with the loss of conductive channels is the increased relative contribution of channels exhibiting nonmodified gating properties, suggesting the presence of a subpopulation of channels that are protected from MMP-induced gating effects. CNGA subunits are known to possess one extracellular core glycosylation site, located at one of two possible positions within the turret loop near the pore-forming region. Our results indicate that CNGA glycosylation can impede MMP-dependent modification of CNG channels. Furthermore, the relative position of the glycosylation site within the pore turret influences the extent of MMP-dependent proteolysis. Glycosylation at the site found in CNGA3 subunits was found to be protective, while glycosylation at the bovine CNGA1 site was not. Relocating the glycosylation site in CNGA1 to the position found in CNGA3 recapitulated CNGA3-like protection from MMP-dependent processing. Taken together, these data indicate that CNGA glycosylation may protect CNG channels from MMP-dependent proteolysis, consistent with MMP modification of channel function having a requirement for physical access to the extracellular face of the channel.
环核苷酸门控 (CNG) 通道对于视网膜光感受器中的光转导至关重要。我们之前已经证明,基质金属蛋白酶-2 和 -9(基质金属蛋白酶家族的成员)的酶活性,是细胞外、Ca(2+) 和 Zn(2+) 依赖性蛋白酶,可增强视杆(CNGA1 和 CNGB1)和视锥(CNGA3 和 CNGB3)CNG 通道的配体敏感性。此外,我们观察到在 MMP 定向门控变化期间晚期开始的最大 CNG 通道电流 (Imax) 减少。在这里,我们证明 CNG 通道在长时间暴露于 MMP 后会失去导电性。与导电通道的丧失同时发生的是表现出未修饰门控特性的通道的相对贡献增加,这表明存在一个亚群的通道免受 MMP 诱导的门控效应的影响。已知 CNGA 亚基在其靠近孔形成区域的炮塔环内的两个可能位置之一具有一个细胞外核心糖基化位点。我们的结果表明,CNGA 糖基化可以阻碍 MMP 依赖性的 CNG 通道修饰。此外,糖基化位点在孔炮塔内的相对位置会影响 MMP 依赖性蛋白水解的程度。在 CNGA3 亚基中发现的位点的糖基化被发现是保护性的,而在牛 CNGA1 位点的糖基化则不是。将 CNGA1 中的糖基化位点迁移到 CNGA3 中发现的位置再现了 CNGA3 样的对 MMP 依赖性加工的保护作用。综上所述,这些数据表明,CNGA 糖基化可能保护 CNG 通道免受 MMP 依赖性蛋白水解的影响,这与 MMP 对通道功能的修饰需要物理接触通道的细胞外表面一致。