Suppr超能文献

非精原细胞瘤性睾丸癌转移状态的预测

Prediction of metastatic status in non-seminomatous testicular cancer.

作者信息

Ruf C G, Sachs S, Khalili-Harbi N, Isbarn H, Wagner W, Matthies C, Meineke V, Fisch M, Chun F K, Abend M

机构信息

Department of Urology, Federal Armed Forces Hospital, 22049, Hamburg, Germany,

出版信息

World J Urol. 2014 Oct;32(5):1205-11. doi: 10.1007/s00345-013-1194-0. Epub 2013 Oct 29.

Abstract

PURPOSE

To examine the significance of 90 biomarkers for predicting metastatic status in non-seminomatous germ cell tumors (NSGCT). By predicting metastatic status, it may be possible to eliminate unnecessary therapeutic or diagnostic efforts.

MATERIALS AND METHODS

We investigated 552 males who were diagnosed with non-metastatic (n = 273) and metastatic (n = 279) NSGCT between 2000 and 2011. The sample included cancers of different histologies: embryonal cell carcinoma (n = 131), teratoma (n = 55), and mixed histology (n = 366). We collected and analyzed more than 90 parameters via logistic regression: demographic characteristics, medical history, histopathological parameters, and levels of tumor markers and hormones.

RESULTS

Testis histology (p = 0.004), clinical symptoms (p = 0.0005), tumor length (p = 0.005), infiltration of the rete testis (p = 0.008), invasion of lymphatic (pL1) and blood vessels (pV1) (p < 0.0001), and levels of enzymes such as LDH, βHCG, AFP, and FSH (p values as small as <0.0001) were associated with metastatic status. With one model, we identified 14 out of 76 (18.4 %) metastatic NSGCT cases with 93-100 % certainty (positive predictive value) at 99 % specificity by the peripheral blood levels of LDH (day of operation) in combination with FSH measurements (1 day after operation). A second model included pV, tumor length, and FSH (1 day after operation). It identified 25 out of 90 (27.8 %) non-metastatic NSGCT with approximately 90 % certainty (negative predictive value) at 94-98 % sensitivity.

CONCLUSIONS

No single parameter was able to discriminate metastatic from non-metastatic NSGCT, but combinations of parameters in two predictive models accurately identified the metastatic status in 23 % of the cases in our sample.

摘要

目的

研究90种生物标志物对预测非精原性生殖细胞肿瘤(NSGCT)转移状态的意义。通过预测转移状态,有可能避免不必要的治疗或诊断措施。

材料与方法

我们调查了2000年至2011年间被诊断为非转移性(n = 273)和转移性(n = 279)NSGCT的552名男性。样本包括不同组织学类型的癌症:胚胎性癌(n = 131)、畸胎瘤(n = 55)和混合组织学类型(n = 366)。我们通过逻辑回归收集并分析了90多个参数:人口统计学特征、病史、组织病理学参数以及肿瘤标志物和激素水平。

结果

睾丸组织学(p = 0.004)、临床症状(p = 0.0005)、肿瘤长度(p = 0.005)、睾丸网浸润(p = 0.008)、淋巴管(pL1)和血管浸润(pV1)(p < 0.0001)以及乳酸脱氢酶(LDH)、β人绒毛膜促性腺激素(βHCG)、甲胎蛋白(AFP)和促卵泡激素(FSH)等酶的水平(p值小至<0.0001)与转移状态相关。在一个模型中,通过手术当天外周血LDH水平与术后1天FSH测量值相结合,我们以99%的特异性、93% - 100%的确定性(阳性预测值)识别出76例转移性NSGCT病例中的14例(18.4%)。第二个模型包括pV、肿瘤长度和术后1天的FSH。它以94% - 98%的敏感性、约90%的确定性(阴性预测值)识别出90例非转移性NSGCT病例中的25例(27.8%)。

结论

没有单一参数能够区分转移性和非转移性NSGCT,但两个预测模型中的参数组合在我们样本中23%的病例中准确识别出了转移状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验