Suppr超能文献

低海拔地区居民和高原地区原住居民的脑压-血流关系。

Cerebral pressure-flow relationship in lowlanders and natives at high altitude.

机构信息

Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada.

1] Department of Physiology, University of Otago, Dunedin, New Zealand [2] School of Physical Education, University of Otago, Dunedin, New Zealand [3] School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.

出版信息

J Cereb Blood Flow Metab. 2014 Feb;34(2):248-57. doi: 10.1038/jcbfm.2013.178. Epub 2013 Oct 30.

Abstract

We investigated if dynamic cerebral pressure-flow relationships in lowlanders are altered at high altitude (HA), differ in HA natives and after return to sea level (SL). Lowlanders were tested at SL (n=16), arrival to 5,050 m, after 2-week acclimatization (with and without end-tidal PO2 normalization), and upon SL return. High-altitude natives (n=16) were tested at 5,050 m. Testing sessions involved resting spontaneous and driven (squat-stand maneuvers at very low (VLF, 0.05 Hz) and low (LF, 0.10 Hz) frequencies) measures to maximize blood pressure (BP) variability and improve assessment of the pressure-flow relationship using transfer function analysis (TFA). Blood flow velocity was assessed in the middle (MCAv) and posterior (PCAv) cerebral arteries. Spontaneous VLF and LF phases were reduced and coherence was elevated with acclimatization to HA (P<0.05), indicating impaired pressure-flow coupling. However, when BP was driven, both the frequency- and time-domain metrics were unaltered and comparable with HA natives. Acute mountain sickness was unrelated to TFA metrics. In conclusion, the driven cerebral pressure-flow relationship (in both frequency and time domains) is unaltered at 5,050 m in lowlanders and HA natives. Our findings indicate that spontaneous changes in TFA metrics do not necessarily reflect physiologically important alterations in the capacity of the brain to regulate BP.

摘要

我们研究了低地人群在高海拔(HA)时的动态脑压力-血流关系是否发生改变,以及这些改变在 HA 本地人中和返回海平面(SL)后是否不同。低地人群在 SL(n=16)、到达 5050 米、2 周适应(有无潮气末 PO2 正常化)以及返回 SL 时进行测试。HA 本地人(n=16)在 5050 米进行测试。测试期间,进行了休息自发性和驱动性(非常低(VLF,0.05 Hz)和低(LF,0.10 Hz)频率的蹲-站动作)测量,以最大限度地提高血压(BP)变异性,并使用传递函数分析(TFA)改善压力-血流关系的评估。血流速度在大脑中动脉(MCAv)和大脑后动脉(PCAv)进行评估。随着对 HA 的适应,自发性 VLF 和 LF 相位减少,相干性升高(P<0.05),表明压力-血流耦合受损。然而,当 BP 被驱动时,频率和时域指标都没有改变,并且与 HA 本地人相当。急性高原病与 TFA 指标无关。总之,在 5050 米时,低地人和 HA 本地人驱动的脑压力-血流关系(在频率和时域)都没有改变。我们的研究结果表明,TFA 指标的自发性变化不一定反映大脑调节 BP 的能力在生理上有重要改变。

相似文献

1
Cerebral pressure-flow relationship in lowlanders and natives at high altitude.
J Cereb Blood Flow Metab. 2014 Feb;34(2):248-57. doi: 10.1038/jcbfm.2013.178. Epub 2013 Oct 30.
2
3
Influence of cerebrovascular resistance on the dynamic relationship between blood pressure and cerebral blood flow in humans.
J Appl Physiol (1985). 2014 Jun 15;116(12):1614-22. doi: 10.1152/japplphysiol.01266.2013. Epub 2014 Apr 17.
4
Influence of sympathoexcitation at high altitude on cerebrovascular function and ventilatory control in humans.
J Appl Physiol (1985). 2012 Oct;113(7):1058-67. doi: 10.1152/japplphysiol.00463.2012. Epub 2012 Jul 26.
6
Cerebral autoregulation index at high altitude assessed by thigh-cuff and transfer function analysis techniques.
Exp Physiol. 2015 Feb 1;100(2):173-81. doi: 10.1113/expphysiol.2014.082479. Epub 2015 Jan 14.
8
Impaired dynamic cerebral autoregulation at extreme high altitude even after acclimatization.
J Cereb Blood Flow Metab. 2011 Jan;31(1):283-92. doi: 10.1038/jcbfm.2010.88. Epub 2010 Jun 23.
9
AltitudeOmics: cerebral autoregulation during ascent, acclimatization, and re-exposure to high altitude and its relation with acute mountain sickness.
J Appl Physiol (1985). 2014 Apr 1;116(7):724-9. doi: 10.1152/japplphysiol.00880.2013. Epub 2013 Dec 26.

引用本文的文献

2
A systematic review, meta-analysis meta-regression amalgamating the driven approaches used quantify dynamic cerebral autoregulation.
J Cereb Blood Flow Metab. 2024 Aug;44(8):1271-1297. doi: 10.1177/0271678X241235878. Epub 2024 Apr 18.
5
Sleep loss effects on physiological and cognitive responses to systemic environmental hypoxia.
Front Physiol. 2022 Dec 12;13:1046166. doi: 10.3389/fphys.2022.1046166. eCollection 2022.
6
An acute bout of controlled subconcussive impacts can alter dynamic cerebral autoregulation indices: a preliminary investigation.
Eur J Appl Physiol. 2022 Apr;122(4):1059-1070. doi: 10.1007/s00421-022-04908-4. Epub 2022 Feb 16.
8
Extremes of cerebral blood flow during hypercapnic squat-stand maneuvers.
Physiol Rep. 2021 Oct;9(19):e15021. doi: 10.14814/phy2.15021.

本文引用的文献

1
Regional cerebral blood flow in humans at high altitude: gradual ascent and 2 wk at 5,050 m.
J Appl Physiol (1985). 2014 Apr 1;116(7):905-10. doi: 10.1152/japplphysiol.00594.2013. Epub 2013 Jun 27.
2
Changes in cerebral blood flow and vasoreactivity to CO2 measured by arterial spin labeling after 6days at 4350m.
Neuroimage. 2013 May 15;72:272-9. doi: 10.1016/j.neuroimage.2013.01.066. Epub 2013 Feb 4.
3
Detection of impaired cerebral autoregulation improves by increasing arterial blood pressure variability.
J Cereb Blood Flow Metab. 2013 Apr;33(4):519-23. doi: 10.1038/jcbfm.2012.191. Epub 2012 Dec 12.
4
Sustained high-altitude hypoxia increases cerebral oxygen metabolism.
J Appl Physiol (1985). 2013 Jan 1;114(1):11-8. doi: 10.1152/japplphysiol.00703.2012. Epub 2012 Sep 27.
5
Influence of sympathoexcitation at high altitude on cerebrovascular function and ventilatory control in humans.
J Appl Physiol (1985). 2012 Oct;113(7):1058-67. doi: 10.1152/japplphysiol.00463.2012. Epub 2012 Jul 26.
6
Assessment of cerebral autoregulation: the quandary of quantification.
Am J Physiol Heart Circ Physiol. 2012 Sep 15;303(6):H658-71. doi: 10.1152/ajpheart.00328.2012. Epub 2012 Jul 20.
7
Regional brain blood flow in man during acute changes in arterial blood gases.
J Physiol. 2012 Jul 15;590(14):3261-75. doi: 10.1113/jphysiol.2012.228551. Epub 2012 Apr 10.
8
Sea-level assessment of dynamic cerebral autoregulation predicts susceptibility to acute mountain sickness at high altitude.
Stroke. 2011 Dec;42(12):3628-30. doi: 10.1161/STROKEAHA.111.621714. Epub 2011 Sep 29.
9
Cerebral artery dilatation maintains cerebral oxygenation at extreme altitude and in acute hypoxia--an ultrasound and MRI study.
J Cereb Blood Flow Metab. 2011 Oct;31(10):2019-29. doi: 10.1038/jcbfm.2011.81. Epub 2011 Jun 8.
10
Effects of acetazolamide and dexamethasone on cerebral hemodynamics in hypoxia.
J Appl Physiol (1985). 2011 May;110(5):1219-25. doi: 10.1152/japplphysiol.01393.2010. Epub 2011 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验