Department of Environmental Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, People's Republic of China.
Environ Sci Pollut Res Int. 2014 Feb;21(4):2943-54. doi: 10.1007/s11356-013-2214-8. Epub 2013 Oct 30.
Molecular-level understanding of soil Cu speciation and distribution assists in management of Cu contamination in mining sites. In this study, one soil sample, collected from a mining site contaminated since 1950s, was characterized complementarily by multiple synchrotron-based bulk and spatially resolved techniques for the speciation and distribution of Cu as well as other related elements (Fe, Ca, Mn, K, Al, and Si). Bulk X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that soil Cu was predominantly associated with Fe oxides instead of soil organic matter. This agreed with the closest association of Cu to Fe by microscopic X-ray fluorescence (U-XRF) and scanning transmission X-ray microscopy (STXM) nanoanalysis, along with the non-occurrence of photoreduction of soil Cu(II) by quick Cu L3,2-edge XANES spectroscopy (Q-XANES) which often occurs when Cu organic complexes are present. Furthermore, bulk-EXAFS and STXM-coupled Fe L3,2-edge nano-XANES analysis revealed soil Cu adsorbed primarily to Fe(III) oxides by inner-sphere complexation. Additionally, Cu K-edge μ-XANES, L3,2-edge bulk-XANES, and successive Q-XANES results identified the presence of Cu2S rather than radiation-damage artifacts dominant in certain microsites of the mining soil. This study demonstrates the great benefits in use of multiple combined synchrotron-based techniques for comprehensive understanding of Cu speciation in heterogeneous soil matrix, which facilitates our prediction of Cu reactivity and environmental fate in the mining site.
对土壤铜形态和分布的分子水平认识有助于管理采矿场的铜污染。在这项研究中,从一个自 20 世纪 50 年代以来一直受到污染的采矿场采集的一个土壤样本,通过多种基于同步加速器的整体和空间分辨技术对铜以及其他相关元素(铁、钙、锰、钾、铝和硅)的形态和分布进行了互补表征。基于同步加速器的 X 射线吸收近边结构(XANES)和扩展 X 射线吸收精细结构(EXAFS)光谱表明,土壤铜主要与铁氧化物而非土壤有机质结合。这与通过微观 X 射线荧光(U-XRF)和扫描透射 X 射线显微镜(STXM)纳米分析发现的铜与铁最接近的关联以及土壤铜(II)的光还原不发生(当存在铜有机配合物时,Q-XANES 光谱通常会发生)相一致。此外,整体 EXAFS 和与 STXM 耦合的 Fe L3,2-edge 纳米 XANES 分析表明,土壤铜主要通过内配位络合吸附到 Fe(III)氧化物上。此外,Cu K-edge μ-XANES、L3,2-edge 整体 XANES 和连续 Q-XANES 结果表明存在 Cu2S,而不是在某些采矿土壤微区中占主导地位的辐射损伤假象。这项研究表明,在多相土壤基质中综合理解铜形态时,使用多种组合的基于同步加速器的技术具有很大的优势,这有助于我们预测采矿场中铜的反应性和环境归宿。