Suppr超能文献

基于相似性的配体对接和结合亲和力预测的非线性评分函数。

Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.

机构信息

Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States.

出版信息

J Chem Inf Model. 2013 Nov 25;53(11):3097-112. doi: 10.1021/ci400510e. Epub 2013 Nov 11.

Abstract

A common strategy for virtual screening considers a systematic docking of a large library of organic compounds into the target sites in protein receptors with promising leads selected based on favorable intermolecular interactions. Despite a continuous progress in the modeling of protein-ligand interactions for pharmaceutical design, important challenges still remain, thus the development of novel techniques is required. In this communication, we describe eSimDock, a new approach to ligand docking and binding affinity prediction. eSimDock employs nonlinear machine learning-based scoring functions to improve the accuracy of ligand ranking and similarity-based binding pose prediction, and to increase the tolerance to structural imperfections in the target structures. In large-scale benchmarking using the Astex/CCDC data set, we show that 53.9% (67.9%) of the predicted ligand poses have RMSD of <2 Å (<3 Å). Moreover, using binding sites predicted by recently developed eFindSite, eSimDock models ligand binding poses with an RMSD of 4 Å for 50.0-39.7% of the complexes at the protein homology level limited to 80-40%. Simulations against non-native receptor structures, whose mean backbone rearrangements vary from 0.5 to 5.0 Å Cα-RMSD, show that the ratio of docking accuracy and the estimated upper bound is at a constant level of ∼0.65. Pearson correlation coefficient between experimental and predicted by eSimDock Ki values for a large data set of the crystal structures of protein-ligand complexes from BindingDB is 0.58, which decreases only to 0.46 when target structures distorted to 3.0 Å Cα-RMSD are used. Finally, two case studies demonstrate that eSimDock can be customized to specific applications as well. These encouraging results show that the performance of eSimDock is largely unaffected by the deformations of ligand binding regions, thus it represents a practical strategy for across-proteome virtual screening using protein models. eSimDock is freely available to the academic community as a Web server at http://www.brylinski.org/esimdock .

摘要

一种常见的虚拟筛选策略考虑将大量有机化合物库系统地对接入蛋白质受体的靶位,然后根据有利的分子间相互作用选择有希望的先导化合物。尽管在药物设计中蛋白质-配体相互作用的建模方面取得了持续进展,但仍然存在重要挑战,因此需要开发新的技术。在本通讯中,我们描述了 eSimDock,这是一种新的配体对接和结合亲和力预测方法。eSimDock 使用基于非线性机器学习的评分函数来提高配体排序和基于相似性的结合构象预测的准确性,并提高对靶结构中结构缺陷的容忍度。在使用 Astex/CCDC 数据集的大规模基准测试中,我们表明,53.9%(67.9%)预测的配体构象的 RMSD<2Å(<3Å)。此外,使用最近开发的 eFindSite 预测的结合位点,eSimDock 模型在蛋白质同源性限制为 80-40%的情况下,对于 50.0-39.7%的复合物,其配体结合构象的 RMSD 为 4Å。针对非天然受体结构的模拟,其平均骨架重排范围从 0.5 到 5.0Å Cα-RMSD,表明对接准确性和估计上限的比值保持在约 0.65 的恒定水平。对于来自 BindingDB 的蛋白质-配体复合物晶体结构的大型数据集,eSimDock 预测的实验和 Ki 值之间的 Pearson 相关系数为 0.58,当靶结构扭曲至 3.0Å Cα-RMSD 时,该系数仅降至 0.46。最后,两个案例研究表明,eSimDock 可以针对特定应用进行定制。这些令人鼓舞的结果表明,eSimDock 的性能在很大程度上不受配体结合区域变形的影响,因此它代表了一种使用蛋白质模型进行全蛋白质组虚拟筛选的实用策略。eSimDock 作为一个 Web 服务器免费提供给学术界使用,网址为 http://www.brylinski.org/esimdock。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验