Suppr超能文献

用于蛋白质-蛋白质相互作用网络自下而上组装的二聚体结构的全蛋白质组建模。

Across-proteome modeling of dimer structures for the bottom-up assembly of protein-protein interaction networks.

作者信息

Maheshwari Surabhi, Brylinski Michal

机构信息

Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.

Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, USA.

出版信息

BMC Bioinformatics. 2017 May 12;18(1):257. doi: 10.1186/s12859-017-1675-z.

Abstract

BACKGROUND

Deciphering complete networks of interactions between proteins is the key to comprehend cellular regulatory mechanisms. A significant effort has been devoted to expanding the coverage of the proteome-wide interaction space at molecular level. Although a growing body of research shows that protein docking can, in principle, be used to predict biologically relevant interactions, the accuracy of the across-proteome identification of interacting partners and the selection of near-native complex structures still need to be improved.

RESULTS

In this study, we developed a new method to discover and model protein interactions employing an exhaustive all-to-all docking strategy. This approach integrates molecular modeling, structural bioinformatics, machine learning, and functional annotation filters in order to provide interaction data for the bottom-up assembly of protein interaction networks. Encouragingly, the success rates for dimer modeling is 57.5 and 48.7% when experimental and computer-generated monomer structures are employed, respectively. Further, our protocol correctly identifies 81% of protein-protein interactions at the expense of only 19% false positive rate. As a proof of concept, 61,913 protein-protein interactions were confidently predicted and modeled for the proteome of E. coli. Finally, we validated our method against the human immune disease pathway.

CONCLUSIONS

Protein docking supported by evolutionary restraints and machine learning can be used to reliably identify and model biologically relevant protein assemblies at the proteome scale. Moreover, the accuracy of the identification of protein-protein interactions is improved by considering only those protein pairs co-localized in the same cellular compartment and involved in the same biological process. The modeling protocol described in this communication can be applied to detect protein-protein interactions in other organisms and pathways as well as to construct dimer structures and estimate the confidence of protein interactions experimentally identified with high-throughput techniques.

摘要

背景

解析蛋白质之间完整的相互作用网络是理解细胞调控机制的关键。人们已付出巨大努力在分子水平上扩大蛋白质组范围相互作用空间的覆盖度。尽管越来越多的研究表明原则上蛋白质对接可用于预测生物学相关的相互作用,但跨蛋白质组识别相互作用伙伴的准确性以及近天然复合物结构的选择仍有待提高。

结果

在本研究中,我们开发了一种采用详尽的全对全对接策略来发现和模拟蛋白质相互作用的新方法。该方法整合了分子建模、结构生物信息学、机器学习和功能注释筛选,以便为蛋白质相互作用网络的自下而上组装提供相互作用数据。令人鼓舞的是,当分别使用实验性和计算机生成的单体结构时,二聚体建模的成功率分别为57.5%和48.7%。此外,我们的方案以仅19%的假阳性率为代价正确识别了81%的蛋白质 - 蛋白质相互作用。作为概念验证,我们为大肠杆菌的蛋白质组可靠地预测和模拟了61,913个蛋白质 - 蛋白质相互作用。最后,我们针对人类免疫疾病途径验证了我们的方法。

结论

由进化约束和机器学习支持的蛋白质对接可用于在蛋白质组规模上可靠地识别和模拟生物学相关的蛋白质组装体。此外,仅考虑那些共定位在同一细胞区室且参与同一生物学过程的蛋白质对,可提高蛋白质 - 蛋白质相互作用识别的准确性。本通讯中描述的建模方案可应用于检测其他生物体和途径中的蛋白质 - 蛋白质相互作用,以及构建二聚体结构并估计通过高通量技术实验鉴定的蛋白质相互作用的可信度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ad/5427563/8853bbc39c34/12859_2017_1675_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验