Electrical and Computer Engineering Department, Lehigh University, Bethlehem, PA 18015, USA.
Lab Chip. 2013 Dec 21;13(24):4755-64. doi: 10.1039/c3lc50863c.
A plasmonic interferometric biosensor that consists of arrays of circular aperture-groove nanostructures patterned on a gold film for phase-sensitive biomolecular detection is demonstrated. The phase and amplitude of interfering surface plasmon polaritons (SPPs) in the proposed device can be effectively engineered by structural tuning, providing flexible and efficient control over the plasmon line shape observed through SPP interference. Spectral fringes with high contrast, narrow linewidth, and large amplitude have been experimentally measured and permit the sensitive detection of protein surface coverage as low as 0.4 pg mm(-2). This sensor resolution compares favorably with commercial prism-based surface plasmon resonance systems (0.1 pg mm(-2)) but is achieved here using a significantly simpler collinear transmission geometry, a miniaturized sensor footprint, and a low-cost compact spectrometer. Furthermore, we also demonstrate superior sensor performance using the intensity interrogation method, which can be combined with CCD imaging to upscale our platform to high-throughput array sensing. A novel low-background interferometric sensing scheme yields a high sensing figure of merit (FOM*) of 146 in the visible region, surpassing that of previous plasmonic biosensors and facilitating ultrasensitive high-throughput detection.
一种基于等离子体干涉的生物传感器,由金膜上的圆形孔径-槽纳米结构阵列组成,用于相敏生物分子检测。通过结构调整,该器件中的干涉表面等离子体激元(SPP)的相位和幅度可以得到有效控制,从而对通过 SPP 干涉观察到的等离子体线形状进行灵活高效的控制。已经实验测量了具有高对比度、窄线宽和大振幅的光谱条纹,允许对低至 0.4 pg mm(-2) 的蛋白质表面覆盖率进行灵敏检测。与商用棱镜型表面等离子体共振系统(0.1 pg mm(-2))相比,该传感器分辨率具有优势,但这里采用的是更简单的共线传输几何形状、小型化的传感器足迹和低成本的紧凑型光谱仪。此外,我们还使用强度询问方法证明了优越的传感器性能,该方法可以与 CCD 成像相结合,将我们的平台扩展到高通量阵列传感。一种新颖的低背景干涉传感方案在可见光区域产生了 146 的高传感品质因数(FOM*),超过了以前的等离子体生物传感器,并实现了超灵敏的高通量检测。