Guerrier Stéphane, Skaloud Jan, Stebler Yannick, Victoria-Feser Maria-Pia
Stéphane Guerrier is PhD student, Research Center for Statistics, HEC Genève, University of Geneva, Geneva, Switzerland (E-mail:
J Am Stat Assoc. 2013 Sep;108(503):1021-1030. doi: 10.1080/01621459.2013.799920. Epub 2013 Sep 27.
This article presents a new estimation method for the parameters of a time series model. We consider here composite Gaussian processes that are the sum of independent Gaussian processes which, in turn, explain an important aspect of the time series, as is the case in engineering and natural sciences. The proposed estimation method offers an alternative to classical estimation based on the likelihood, that is straightforward to implement and often the only feasible estimation method with complex models. The estimator furnishes results as the optimization of a criterion based on a standardized distance between the sample wavelet variances (WV) estimates and the model-based WV. Indeed, the WV provides a decomposition of the variance process through different scales, so that they contain the information about different features of the stochastic model. We derive the asymptotic properties of the proposed estimator for inference and perform a simulation study to compare our estimator to the MLE and the LSE with different models. We also set sufficient conditions on composite models for our estimator to be consistent, that are easy to verify. We use the new estimator to estimate the stochastic error's parameters of the sum of three first order Gauss-Markov processes by means of a sample of over 800,000 issued from gyroscopes that compose inertial navigation systems. Supplementary materials for this article are available online.
本文提出了一种时间序列模型参数的新估计方法。我们在此考虑复合高斯过程,它是独立高斯过程的总和,而这些独立高斯过程反过来解释了时间序列的一个重要方面,工程和自然科学领域的情况就是如此。所提出的估计方法为基于似然的经典估计提供了一种替代方法,这种方法易于实现,并且对于复杂模型来说通常是唯一可行的估计方法。该估计器通过优化一个基于样本小波方差(WV)估计与基于模型的WV之间标准化距离的准则来给出结果。实际上,WV通过不同尺度对方差过程进行分解,从而它们包含了关于随机模型不同特征的信息。我们推导了所提出估计器用于推断的渐近性质,并进行了模拟研究,以将我们的估计器与不同模型下的最大似然估计(MLE)和最小二乘估计(LSE)进行比较。我们还为复合模型设定了充分条件,以使我们的估计器是一致的,这些条件易于验证。我们使用新估计器通过来自构成惯性导航系统的陀螺仪的超过800,000个样本估计三个一阶高斯 - 马尔可夫过程之和的随机误差参数。本文的补充材料可在线获取。