The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. Empa, Solid State Chemistry and Catalysis, CH-8600 Dübendorf, Switzerland. Forschüngszentrum Jülich, Peter Grünberg Institute (PGI-7), D-52425 Jülich, Germany.
Nanotechnology. 2013 Nov 29;24(47):475701. doi: 10.1088/0957-4484/24/47/475701. Epub 2013 Oct 31.
Atomic force microscopy (AFM), conductive AFM and electrochemical strain microscopy were used to study the topography change at the defect surface of SrTiO3:N, breakdown in the electrical conduction of the tip/sample/electrode system and ionic motion. The IV curves show resistance switching behavior in a voltage range ±6 V < U <± 10 V and a current of maximum ±10 nA. A series of sweeping IV curves resulted in an increase in ionically polarized states (surface charging), electrochemical volume (surface deformations) and sequential formations of stable surface protrusions. The surface deformations are reversible (U <± 5 V) without IV pinched hysteresis and remained stable during the resistance switching (U >± 6 V), revealing the additional necessity (albeit insufficient due to 50% yield of working cells) of surface protrusion formation for resistance switching memory.
原子力显微镜(AFM)、导电 AFM 和电化学应变显微镜被用于研究 SrTiO3:N 缺陷表面的形貌变化、针尖/样品/电极系统的电导率击穿以及离子运动。IV 曲线在 ±6 V < U < ± 10 V 的电压范围内和最大 ±10 nA 的电流下显示出电阻开关行为。一系列 IV 曲线的扫描导致离子极化状态(表面充电)、电化学体积(表面变形)和稳定表面突起的顺序形成增加。表面变形是可逆的(U < ± 5 V),没有 IV 夹滞后,并且在电阻开关期间保持稳定(U > ± 6 V),这表明表面突起形成对于电阻开关存储器是必要的(尽管由于工作电池的 50%产量不足,这是不够的)。