Suppr超能文献

未带电 tRNA-磷酸果糖激酶在氨基酸缺乏时的相互作用。

Uncharged tRNA-phosphofructokinase interaction in amino acid deficiency.

机构信息

NIH, 4504 Traymore Street, 20814-3965, Bethesda, Maryland, USA.

出版信息

Amino Acids. 1996 Jun;10(2):99-108. doi: 10.1007/BF00806583.

Abstract

When the tRNA of mammalian cells is incompletely charged due to amino acid deficiency or by analogs which cannot be activated, many metabolic events become limited. This rapid demise of cell function appears to be due to the inhibition of phosphofructokinase (PFK) by uncharged tRNA (FEBS Lett 302: 113 (1992)). Charged tRNA has been shown to be "sequestered within the protein synthetic machinery", (Negrutskii, B. S. and Deutscher, M. P. (1992) Proc Natl Acad Sci USA 89: 3601) and would therefore be removed from an inhibitory role. Besides the direct demonstration that tRNA inhibits PFK in an assay regarded as indicative of its control mechanism, several reports in the literature support this model. These include 1) The rapid onset of inhibition of glycolysis and glucose uptake by intact cells upon amino acid deficiency and the similar lesion at the 43S ribosomal subunit on glucose or amino acid deprivation. 2) The recognition that unusually high concentrations of cAMP required to stimulate protein synthesis in energy depleted or gel filtered lysates correlates with its action on PFK as an analog of the positive effector, adenosine-5'-monophosphate. 3) The often repeated observation that the product of PFK activity, fructose-1,6-diphosphate, is a stimulant of protein synthesis (see Jackson, R. J., et al. (1983) Eur J Biochem 131: 289). This diphosphate has been shown to be the proximate effector binding to eIF-2B, the guanine nucleotide exchange factor (Singh, L. P. Arror, A. R. and Wahba, A. J. (1994), FASEB J. 8: 279) which by releasing GDP bound to the inactive GDP: eIF-2 complex, permits the factor to initiate a new peptide chain. The above information supports the view that the block at the G1 restriction point in the cell cycle of normal cells brought about by amino acid deprivation is a result of inhibition of protein synthesis through the phosphofructokinase-uncharged tRNA mechanism. This is consistent with observations in the literature that tumor and transformed cells, which are more resistant to this block (Pardee, A. B., Proc Natl Acad Sci USA 71: 1286-1291 (1974)) have a higher phosphofructokinase activity or higher levels of fructose-1,6-diphosphate.

摘要

当哺乳动物细胞的 tRNA 由于氨基酸缺乏或类似物不能被激活而不完全充电时,许多代谢事件受到限制。细胞功能的这种快速衰退似乎是由于未充电的 tRNA 抑制磷酸果糖激酶 (PFK) 引起的(FEBS Lett 302:113(1992))。已显示带电荷的 tRNA“被隔离在蛋白质合成机制内”(Negrutskii,BS 和 Deutscher,MP(1992)Proc Natl Acad Sci USA 89:3601),因此将不再具有抑制作用。除了直接证明 tRNA 在被认为指示其控制机制的测定中抑制 PFK 之外,文献中的几项报告也支持该模型。这些包括 1)氨基酸缺乏时完整细胞中糖酵解和葡萄糖摄取的抑制迅速发生,以及葡萄糖或氨基酸剥夺时 43S 核糖体亚基上的类似病变。2)认识到需要异常高浓度的 cAMP 才能刺激能量耗尽或凝胶过滤的裂解物中的蛋白质合成,这与其作为正效应物,腺苷-5'-单磷酸类似物对 PFK 的作用相关。3)经常重复观察到 PFK 活性的产物果糖-1,6-二磷酸是蛋白质合成的刺激物(见 Jackson,RJ 等人。(1983)Eur J Biochem 131:289)。已经表明,这种二磷酸是与 eIF-2B 结合的最接近的效应物,eIF-2B 是鸟嘌呤核苷酸交换因子(Singh,LP Arror,AR 和 Wahba,AJ(1994),FASEB J. 8:279),通过释放与无活性 GDP:eIF-2 复合物结合的 GDP,允许该因子启动新的肽链。上述信息支持这样的观点,即正常细胞细胞周期中由于氨基酸剥夺而在 G1 限制点的阻断是通过磷酸果糖激酶-未充电 tRNA 机制抑制蛋白质合成的结果。这与文献中的观察结果一致,即肿瘤和转化细胞对这种阻断更具抵抗力(Pardee,AB,Proc Natl Acad Sci USA 71:1286-1291(1974)),具有更高的磷酸果糖激酶活性或更高水平的果糖-1,6-二磷酸。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验