School of Computing and Mathematics and Centre for Mathematical Science, Plymouth University, Plymouth PL4 8AA, United Kingdom and INFN, Sezione di Torino, via Pietro Giuria, 1, I-10125 Torino, Italy.
Phys Rev Lett. 2013 Oct 18;111(16):161602. doi: 10.1103/PhysRevLett.111.161602. Epub 2013 Oct 16.
Recently an efficient numerical method has been developed to implement the constraints of crossing symmetry and unitarity on the operator dimensions and operator product expansion coefficients of conformal field theories in diverse space-time dimensions. It appears that the calculations can be done only for theories lying at the boundary of the allowed parameter space. Here it is pointed out that a similar method can be applied to a larger class of conformal field theories, whether unitary or not, and no free parameter remains, provided we know the fusion algebra of the low lying primary operators. As an example we calculate using first principles, with no phenomenological input, the lowest scaling dimensions of the local operators associated with the Yang-Lee edge singularity in three and four space dimensions. The edge exponents compare favorably with the latest numerical estimates. A consistency check of this approach on the 3D critical Ising model is also made.
最近,人们开发了一种有效的数值方法,以实现对不同时空维度的共形场论中算子维数和算子乘积展开系数的交叉对称和幺正约束。似乎只有在允许的参数空间边界上的理论才能进行这样的计算。在这里,人们指出,只要我们知道低能原算子的融合代数,类似的方法就可以应用于更广泛的一类共形场论,无论其是否幺正,并且没有自由参数。作为一个例子,我们使用第一性原理进行计算,不使用唯象输入,计算出与三维和四维空间中的杨-李边缘奇点相关的局部算子的最低标度维度。边缘指数与最新的数值估计值非常吻合。还对 3D 临界伊辛模型的这种方法进行了一致性检验。