Evenbly G, Vidal G
Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA.
Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada.
Phys Rev Lett. 2016 Jan 29;116(4):040401. doi: 10.1103/PhysRevLett.116.040401. Epub 2016 Jan 28.
Consider the partition function of a classical system in two spatial dimensions, or the Euclidean path integral of a quantum system in two space-time dimensions, both on a lattice. We show that the tensor network renormalization algorithm [G. Evenbly and G. Vidal Phys. Rev. Lett. 115, 180405 (2015)] can be used to implement local scale transformations on these objects, namely, a lattice version of conformal maps. Specifically, we explain how to implement the lattice equivalent of the logarithmic conformal map that transforms the Euclidean plane into a cylinder. As an application, and with the 2D critical Ising model as a concrete example, we use this map to build a lattice version of the scaling operators of the underlying conformal field theory, from which one can extract their scaling dimensions and operator product expansion coefficients.
考虑二维空间中经典系统的配分函数,或者二维时空量子系统在格点上的欧几里得路径积分。我们表明,张量网络重整化算法[G. 埃文布利和G. 维达尔,《物理评论快报》115, 180405 (2015)]可用于对这些对象进行局部尺度变换,即格点版本的共形映射。具体而言,我们解释如何实现将欧几里得平面变换为圆柱的对数共形映射的格点等效操作。作为一个应用,并以二维临界伊辛模型为例,我们使用此映射构建基础共形场论的标度算符的格点版本,从中可以提取它们的标度维数和算符乘积展开系数。