Suppr超能文献

层状琼脂糖构建物中深度依赖性应变的直接无创测量与数值模拟

Direct noninvasive measurement and numerical modeling of depth-dependent strains in layered agarose constructs.

作者信息

Griebel A J, Khoshgoftar M, Novak T, van Donkelaar C C, Neu C P

机构信息

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, US.

Orthopaedic Research Laboratory, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands.

出版信息

J Biomech. 2014 Jun 27;47(9):2149-56. doi: 10.1016/j.jbiomech.2013.09.025. Epub 2013 Oct 8.

Abstract

Biomechanical factors play an important role in the growth, regulation, and maintenance of engineered biomaterials and tissues. While physical factors (e.g. applied mechanical strain) can accelerate regeneration, and knowledge of tissue properties often guide the design of custom materials with tailored functionality, the distribution of mechanical quantities (e.g. strain) throughout native and repair tissues is largely unknown. Here, we directly quantify distributions of strain using noninvasive magnetic resonance imaging (MRI) throughout layered agarose constructs, a model system for articular cartilage regeneration. Bulk mechanical testing, giving both instantaneous and equilibrium moduli, was incapable of differentiating between the layered constructs with defined amounts of 2% and 4% agarose. In contrast, MRI revealed complex distributions of strain, with strain transfer to softer (2%) agarose regions, resulting in amplified magnitudes. Comparative studies using finite element simulations and mixture (biphasic) theory confirmed strain distributions in the layered agarose. The results indicate that strain transfer to soft regions is possible in vivo as the biomaterial and tissue changes during regeneration and maturity. It is also possible to modulate locally the strain field that is applied to construct-embedded cells (e.g. chondrocytes) using stratified agarose constructs.

摘要

生物力学因素在工程生物材料和组织的生长、调节及维持过程中发挥着重要作用。虽然物理因素(如施加的机械应变)能够加速再生,并且组织特性方面的知识常常指导具有定制功能的定制材料的设计,但机械量(如应变)在天然组织和修复组织中的分布情况在很大程度上仍是未知的。在此,我们使用非侵入性磁共振成像(MRI)直接量化了贯穿分层琼脂糖构建体(一种用于关节软骨再生的模型系统)的应变分布。给出瞬时模量和平衡模量的整体力学测试无法区分含有2%和4%琼脂糖的分层构建体。相比之下,MRI揭示了复杂的应变分布,应变转移至较软(2%)的琼脂糖区域,导致应变幅度增大。使用有限元模拟和混合(双相)理论进行的对比研究证实了分层琼脂糖中的应变分布。结果表明,随着生物材料和组织在再生及成熟过程中发生变化,应变转移至柔软区域在体内是可能的。使用分层琼脂糖构建体还能够局部调节施加于构建体包埋细胞(如软骨细胞)的应变场。

相似文献

1
Direct noninvasive measurement and numerical modeling of depth-dependent strains in layered agarose constructs.
J Biomech. 2014 Jun 27;47(9):2149-56. doi: 10.1016/j.jbiomech.2013.09.025. Epub 2013 Oct 8.
3
A layered agarose approach to fabricate depth-dependent inhomogeneity in chondrocyte-seeded constructs.
J Orthop Res. 2005 Jan;23(1):134-41. doi: 10.1016/j.orthres.2004.05.015.
4
Constrained Cage Culture Improves Engineered Cartilage Functional Properties by Enhancing Collagen Network Stability.
Tissue Eng Part A. 2017 Aug;23(15-16):847-858. doi: 10.1089/ten.TEA.2016.0467. Epub 2017 Mar 27.
7
Comparative assessment of intrinsic mechanical stimuli on knee cartilage and compressed agarose constructs.
Med Eng Phys. 2017 Jun;44:87-93. doi: 10.1016/j.medengphy.2017.02.013. Epub 2017 Mar 18.
8
In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits.
Am J Sports Med. 2010 Mar;38(3):509-19. doi: 10.1177/0363546509352448. Epub 2010 Jan 21.
9
A self-assembling process in articular cartilage tissue engineering.
Tissue Eng. 2006 Apr;12(4):969-79. doi: 10.1089/ten.2006.12.969.
10
3D braid scaffolds for regeneration of articular cartilage.
J Mech Behav Biomed Mater. 2014 Jun;34:37-46. doi: 10.1016/j.jmbbm.2014.01.004. Epub 2014 Jan 28.

引用本文的文献

2
Ontogeny informs regeneration: explant models to investigate the role of the extracellular matrix in cartilage tissue assembly and development.
Connect Tissue Res. 2020 May-Jul;61(3-4):278-291. doi: 10.1080/03008207.2019.1698556. Epub 2020 Mar 18.
3
Hydrogels for Cartilage Regeneration, from Polysaccharides to Hybrids.
Polymers (Basel). 2017 Dec 4;9(12):671. doi: 10.3390/polym9120671.
4
Laboratory layered latte.
Nat Commun. 2017 Dec 12;8(1):1960. doi: 10.1038/s41467-017-01852-2.
5
Nondestructive Techniques to Evaluate the Characteristics and Development of Engineered Cartilage.
Ann Biomed Eng. 2016 Mar;44(3):733-49. doi: 10.1007/s10439-015-1535-9. Epub 2016 Jan 27.
6
Application of Elastography for the Noninvasive Assessment of Biomechanics in Engineered Biomaterials and Tissues.
Ann Biomed Eng. 2016 Mar;44(3):705-24. doi: 10.1007/s10439-015-1542-x. Epub 2016 Jan 20.
7
Ultrasound Elastography for Estimation of Regional Strain of Multilayered Hydrogels and Tissue-Engineered Cartilage.
Ann Biomed Eng. 2015 Dec;43(12):2991-3003. doi: 10.1007/s10439-015-1356-x. Epub 2015 Jun 16.

本文引用的文献

1
Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering.
Biomaterials. 2013 Nov;34(33):8241-57. doi: 10.1016/j.biomaterials.2013.07.052. Epub 2013 Aug 6.
2
Noninvasive assessment of osteoarthritis severity in human explants by multicontrast MRI.
Magn Reson Med. 2014 Feb;71(2):807-14. doi: 10.1002/mrm.24725.
3
Sliding indentation enhances collagen content and depth-dependent matrix distribution in tissue-engineered cartilage constructs.
Tissue Eng Part A. 2013 Sep;19(17-18):1949-59. doi: 10.1089/ten.TEA.2012.0688. Epub 2013 May 17.
4
The importance of superficial collagen fibrils for the function of articular cartilage.
Biomech Model Mechanobiol. 2014 Jan;13(1):41-51. doi: 10.1007/s10237-013-0485-0. Epub 2013 Mar 22.
5
Low agarose concentration and TGF-β3 distribute extracellular matrix in tissue-engineered cartilage.
Tissue Eng Part A. 2013 Jul;19(13-14):1621-31. doi: 10.1089/ten.TEA.2012.0541. Epub 2013 Apr 10.
6
Noninvasive dualMRI-based strains vary by depth and region in human osteoarthritic articular cartilage.
Osteoarthritis Cartilage. 2013 Feb;21(2):394-400. doi: 10.1016/j.joca.2012.11.009. Epub 2012 Nov 24.
7
Transient and microscale deformations and strains measured under exogenous loading by noninvasive magnetic resonance.
PLoS One. 2012;7(3):e33463. doi: 10.1371/journal.pone.0033463. Epub 2012 Mar 20.
8
Tissue engineering of functional articular cartilage: the current status.
Cell Tissue Res. 2012 Mar;347(3):613-27. doi: 10.1007/s00441-011-1243-1. Epub 2011 Oct 27.
10
A reaction-diffusion model to predict the influence of neo-matrix on the subsequent development of tissue-engineered cartilage.
Comput Methods Biomech Biomed Engin. 2011 May;14(5):425-32. doi: 10.1080/10255842.2011.554409.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验