Suppr超能文献

基于气流-土芯技术的 N2、N2O、NO、CO2 和 CH4 排放的自动化在线测量。

Automated online measurement of N2, N2O, NO, CO2, and CH4 emissions based on a gas-flow-soil-core technique.

机构信息

State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Chemosphere. 2013 Nov;93(11):2848-53. doi: 10.1016/j.chemosphere.2013.07.001. Epub 2013 Nov 1.

Abstract

The gas-flow-soil-core (GFSC) technique allows to directly measure emission rates of denitrification gases of incubated soil cores. However, the technique was still suffering some drawbacks such as inadequate accuracy due to asynchronous detection of dinitrogen (N2) and other gases and low measurement frequency. Furthermore, its application was limited due to intensive manual operation. To overcome these drawbacks, we updated the GFSC system as described by Wang et al. (2011) by (a) using both a chemiluminescent detector and a gas chromatograph detector to measure nitric oxide (NO), (b) synchronizing the measurements of N2, NO, nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), and (c) fully automating the sampling/analysis of all the gases. These technical modifications significantly reduced labor demands by at least a factor of two, increased the measurement frequency from 3 to 6 times per day and resulted in remarkable improvements in measurement accuracy (with detection limits of 0.5, 0.01, 0.05, 2.3 and 0.2μgN or Ch(-1)kg(-1)ds, or 17, 0.3, 1.8, 82, and 6μgN or Cm(-2)h(-1), for N2, N2O, NO, CO2, and CH4, respectively). In some circumstances, the modified system measured significantly more N2 and CO2 and less N2O and NO because of the enhanced measurement frequency. The modified system distinguished the differences in emissions of the denitrification gases and CO2 due to a 20% change in initial carbon supplies. It also remarkably recovered approximately 90% of consumed nitrate during incubation. These performances validate the technical improvement, and indicate that the improved GFSC system may provide a powerful research tool for obtaining deeper insights into the processes of soil carbon and nitrogen transformation during denitrification.

摘要

气-土芯(GFSC)技术可直接测量培养土芯反硝化气体的排放速率。然而,该技术仍存在一些缺陷,例如由于氮(N2)和其他气体的检测不同步以及测量频率低,导致准确性不足。此外,由于需要大量的人工操作,其应用受到限制。为了克服这些缺陷,我们按照 Wang 等人(2011 年)的描述对 GFSC 系统进行了更新(a)使用化学发光检测器和气相色谱检测器测量一氧化氮(NO),(b)同步测量 N2、NO、氧化亚氮(N2O)、二氧化碳(CO2)和甲烷(CH4),以及(c)完全自动化所有气体的采样/分析。这些技术改进至少将劳动力需求减少了两倍,将测量频率从每天 3 次增加到 6 次,并且显著提高了测量精度(检测限分别为 0.5、0.01、0.05、2.3 和 0.2μgN 或 Ch(-1)kg(-1)ds,或 17、0.3、1.8、82 和 6μgN 或 Cm(-2)h(-1),用于 N2、N2O、NO、CO2 和 CH4)。在某些情况下,由于测量频率的提高,改进后的系统测量到的 N2 和 CO2 明显更多,而 N2O 和 NO 则更少。改进后的系统由于初始碳供应的 20%变化区分了反硝化气体和 CO2 的排放差异。它还显著回收了培养过程中消耗的硝酸盐的约 90%。这些性能验证了技术改进,并表明改进后的 GFSC 系统可能为深入了解反硝化过程中土壤碳氮转化过程提供有力的研究工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验