AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, Neustadt a.d.W., Germany.
Department of Agricultural Sciences, PO Box 27, 00014 University of Helsinki, Helsinki, Finland.
J Gen Virol. 2014 Feb;95(Pt 2):486-495. doi: 10.1099/vir.0.058693-0. Epub 2013 Nov 1.
Sweet potato chlorotic stunt virus (SPCSV; genus Crinivirus, family Closteroviridae) causes heavy yield losses in sweet potato plants co-infected with other viruses. The dsRNA-specific class 1 RNase III-like endoribonuclease (RNase3) encoded by SPCSV suppresses post-transcriptional gene silencing and eliminates antiviral defence in sweet potato plants in an endoribonuclease activity-dependent manner. RNase3 can cleave long dsRNA molecules, synthetic small interfering RNAs (siRNAs), and plant- and virus-derived siRNAs extracted from sweet potato plants. In this study, conditions for efficient expression and purification of enzymically active recombinant RNase3 were established. Similar to bacterial class 1 RNase III enzymes, RNase3-Ala (a dsRNA cleavage-deficient mutant) bound to and processed double-stranded siRNA (ds-siRNA) as a dimer. The results support the classification of SPCSV RNase3 as a class 1 RNase III enzyme. There is little information about the specificity of RNase III enzymes on small dsRNAs. In vitro assays indicated that ds-siRNAs and microRNAs (miRNAs) with a regular A-form conformation were cleaved by RNase3, but asymmetrical bulges, extensive mismatches and 2'-O-methylation of ds-siRNA and miRNA interfered with processing. Whereas Mg(2+) was the cation that best supported the catalytic activity of RNase3, binding of 21 nt small dsRNA molecules was most efficient in the presence of Mn(2+). Processing of long dsRNA by RNase3 was efficient at pH 7.5 and 8.5, whereas ds-siRNA was processed more efficiently at pH 8.5. The results revealed factors that influence binding and processing of small dsRNA substrates by class 1 RNase III in vitro or make them unsuitable for processing by the enzyme.
甘薯潜隐病毒(SPCSV;属 Crinivirus,科 Closteroviridae)在与其他病毒共同感染的甘薯植物中导致严重的产量损失。SPCSV 编码的 dsRNA 特异性 1 类 RNase III 样内切核酸酶(RNase3)以内切核酸酶活性依赖的方式抑制甘薯植物中的转录后基因沉默并消除抗病毒防御。RNase3 可以切割长 dsRNA 分子、合成的小干扰 RNA(siRNA)以及从甘薯植物中提取的植物和病毒衍生的 siRNA。在这项研究中,建立了高效表达和纯化具有酶活性的重组 RNase3 的条件。与细菌 1 类 RNase III 酶类似,RNase3-Ala(dsRNA 切割缺陷突变体)作为二聚体结合并加工双链 siRNA(ds-siRNA)。结果支持将 SPCSV RNase3 归类为 1 类 RNase III 酶。关于小 dsRNA 上 RNase III 酶的特异性的信息很少。体外实验表明,RNase3 可以切割具有规则 A 构象的 ds-siRNA 和 microRNA(miRNA),但 ds-siRNA 和 miRNA 的不对称凸起、广泛错配和 2'-O-甲基化会干扰加工。虽然 Mg2+ 是最能支持 RNase3 催化活性的阳离子,但在 Mn2+ 存在下,21nt 小 dsRNA 分子的结合效率最高。RNase3 对长 dsRNA 的加工在 pH7.5 和 8.5 下效率较高,而 ds-siRNA 在 pH8.5 下的加工效率更高。结果揭示了影响 1 类 RNase III 在体外结合和加工小 dsRNA 底物的因素,或者使它们不适合该酶加工。