Suppr超能文献

通过电化学方法制备了两面覆盖有 NiO 纳米颗粒的石墨烯薄膜,可作为高性能锂离子电池的阳极。

Preparation via an electrochemical method of graphene films coated on both sides with NiO nanoparticles for use as high-performance lithium ion anodes.

出版信息

Nanotechnology. 2013 Nov 29;24(47):475402. doi: 10.1088/0957-4484/24/47/475402.

Abstract

We report on a simple strategy for the direct synthesis of a thin film comprising interconnected NiO nanoparticles deposited on both sides of a graphene sheet via cathodic deposition. For the co-electrodeposition, graphene oxide (GO) is treated with water-soluble cationic poly(ethyleneimine) (PEI) which acts as a stabilizer and trapping agent to form complexes of GO and Ni2+. The positively charged complexes migrate toward the stainless steel substrate, resulting in the electrochemical deposition of PEI-modified GO/Ni(OH)2 at the electrode surface under an applied electric field. The as-synthesized film is then converted to graphene/NiO after annealing at 350 ° C. The interconnected NiO nanoparticles are uniformly deposited on both sides of the graphene surface, as evidenced by field emission scanning electron microscopy, transmission electron microscopy and energy dispersive spectrometry. This graphene/NiO structure shows enhanced electrochemical performance with a large reversible capacity, good cyclic performance and improved electronic conductivity as an anode material for lithium ion batteries. A reversible capacity is retained above 586 mA h g−1 after 50 cycles. The findings reported herein suggest that this strategy can be effectively used to overcome a bottleneck problem associated with the electrochemical production of graphene/metal oxide films for lithium ion battery anodes.

摘要

我们报告了一种简单的策略,用于通过阴极沉积直接合成由沉积在石墨烯片两侧的互连 NiO 纳米粒子组成的薄膜。对于共电沉积,氧化石墨烯 (GO) 用水溶性阳离子聚(亚乙基亚胺)(PEI)处理,PEI 作为稳定剂和捕集剂,形成 GO 和 Ni2+的配合物。带正电荷的配合物向不锈钢基底迁移,导致在施加电场下在电极表面电化学沉积 PEI 改性的 GO/Ni(OH)2。然后将合成的薄膜在 350°C 下退火,转化为石墨烯/NiO。场发射扫描电子显微镜、透射电子显微镜和能谱分析表明,互连的 NiO 纳米粒子均匀地沉积在石墨烯表面的两侧。这种石墨烯/NiO 结构表现出增强的电化学性能,具有大的可逆容量、良好的循环性能和提高的电子导电性,可用作锂离子电池的阳极材料。在 50 次循环后,可逆容量保持在 586 mA h g-1 以上。本研究结果表明,该策略可有效用于克服与锂离子电池阳极用石墨烯/金属氧化物薄膜的电化学生产相关的瓶颈问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验