Lou Yongbing, Liang Jing, Peng Yinglian, Chen Jinxi
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
Phys Chem Chem Phys. 2015 Apr 14;17(14):8885-93. doi: 10.1039/c4cp06077f. Epub 2015 Mar 6.
Reducing the particle size of active component in electrode material could significantly improve the electrochemical performance of lithium-ion batteries. Herein, we report a facile method for preparing cobalt oxide nanoparticles-reduced graphene oxide (Co3O4-RGO) nanocomposite, which was composed of ultra-small Co3O4 nanoparticles (∼12.5 nm in size) anchored on RGO nanosheets, as anode material for lithium-ion batteries. Both of the Co3O4-RGO nanocomposite and Co3O4 nanoparticles showed very high specific surface areas of ∼149.5 m(2) g(-1) and ∼107.4 m(2) g(-1). The Co3O4-RGO nanocomposite showed excellent coulombic efficiency, high lithium storage capacity and good rate capability. With an optimum weight percentage of RGO (∼40 wt%), the nanocomposite displayed a high reversible discharge capacity of 830.7 mA h g(-1) after 75 cycles at 200 mA g(-1), and a reversible capacity of 680.9 mA h g(-1) after 30 cycles at 200 mA g(-1) and 100 consecutive cycles at 500 mA g(-1). After each eight cycles at 50, 100, 200, and 500 mA g(-1), the nanocomposite showed high reversible specific capacities of about 1153.2, 961.0, 851.4 and 736.4 mA h g(-1), respectively. These results show the importance of anchoring ultra-small nanoparticles on graphene nanosheets for maximum utilization of electrochemically active Co3O4 nanoparticles and graphene for energy storage applications in high-performance lithium-ion batteries.
减小电极材料中活性成分的粒径可显著提高锂离子电池的电化学性能。在此,我们报道了一种制备氧化钴纳米颗粒-还原氧化石墨烯(Co3O4-RGO)纳米复合材料的简便方法,该复合材料由锚定在RGO纳米片上的超小Co3O4纳米颗粒(尺寸约为12.5 nm)组成,用作锂离子电池的负极材料。Co3O4-RGO纳米复合材料和Co3O4纳米颗粒的比表面积都非常高,分别约为149.5 m² g⁻¹ 和107.4 m² g⁻¹ 。Co3O4-RGO纳米复合材料表现出优异的库仑效率、高储锂容量和良好的倍率性能。当RGO的最佳重量百分比约为40 wt%时,该纳米复合材料在200 mA g⁻¹ 下循环75次后显示出830.7 mA h g⁻¹ 的高可逆放电容量,在200 mA g⁻¹ 下循环30次以及在500 mA g⁻¹ 下连续循环100次后可逆容量为680.9 mA h g⁻¹ 。在50、100、200和500 mA g⁻¹ 下每八次循环后,该纳米复合材料分别显示出约1153.2、961.0、851.4和736.4 mA h g⁻¹ 的高可逆比容量。这些结果表明,将超小纳米颗粒锚定在石墨烯纳米片上对于在高性能锂离子电池储能应用中最大程度利用电化学活性Co3O4纳米颗粒和石墨烯具有重要意义。