Nanotechnology. 2013 Nov 29;24(47):475601. doi: 10.1088/0957-4484/24/47/475601.
Impressive opto-electronic devices and transistors have recently been fabricated from GaAs nanopillars grown by catalyst-free selective-area epitaxy, but this growth technique has always resulted in high densities of stacking faults. A stacking fault occurs when atoms on the growing (111) surface occupy the sites of a hexagonal-close-pack (hcp) lattice instead of the normal face-centered-cubic (fcc) lattice sites. When stacking faults occur consecutively, the crystal structure is locally wurtzite instead of zinc-blende, and the resulting band offsets are known to negatively impact device performance. Here we present experimental and theoretical evidence that indicate stacking fault formation is related to the size of the critical nucleus, which is temperature dependent. The difference in energy between the hcp and fcc orientation of small nuclei is computed using density-function theory. The minimum energy difference of 0.22 eV is calculated for a nucleus with 21 atoms, so the population of nuclei in the hcp orientation is expected to decrease as the nucleus grows larger. The experiment shows that stacking fault occurrence is dramatically reduced from 22% to 3% by raising the growth temperature from 730 to 790 ° C. These data are interpreted using classical nucleation theory which dictates a larger critical nucleus at higher growth temperature.
最近,人们已经使用无催化剂选择性区域外延生长技术成功制备出了具有令人印象深刻的光电性能和晶体管性能的 GaAs 纳米柱,但这种生长技术始终会导致堆垛层错的高密度出现。当(111)表面生长的原子占据密排六方(hcp)晶格的位置而不是正常的面心立方(fcc)晶格位置时,就会发生堆垛层错。当堆垛层错连续发生时,晶体结构在局部上是纤锌矿而不是闪锌矿,而由此产生的能带偏移已知会对器件性能产生负面影响。在这里,我们提出了实验和理论证据,表明堆垛层错的形成与临界核的大小有关,而临界核的大小又与温度有关。使用密度泛函理论计算了小核的 hcp 和 fcc 取向之间的能量差。对于具有 21 个原子的核,计算出的最小能量差为 0.22 eV,因此随着核的生长,hcp 取向的核的数量预计会减少。实验表明,通过将生长温度从 730°C 提高到 790°C,堆垛层错的发生率从 22%显著降低到 3%。这些数据使用经典成核理论进行了解释,该理论表明在较高的生长温度下存在更大的临界核。