Faculty of Agricultural and Applied Biological Sciences, University of Ghent, Coupure Links 653, B-9000, Gent, Belgium.
Environ Monit Assess. 1996 Sep;42(1-2):189-207. doi: 10.1007/BF00394050.
Present and future annual methane flux estimates out of landfills, rice paddies and natural wetlands, as well as the sorption capacity of aerobic soils for atmospheric methane, are assessed. The controlling factors and uncertainties with regard to soil methanogenesis and methanotrophy are also briefly discussed.The actual methane emission rate out of landfills is estimated at about 40 Tg yr(-1). Changes in waste generation, waste disposal and landfill management could have important consequences on future methane emissions from waste dumps. If all mitigating options can be achieved towards the year 2015, the CH4 emission rate could be reduced to 13 Tg yr(-1). Otherwise, the emission rate from landfills could increase to 63 Tg yr(-1) by the year 2025. Methane emission from rice paddies is estimated at 60 Tg yr(-1). The predicted increase of rice production between the years 1990 and 2025 could cause an increase of the CH4 emission rate to 78 Tg yr(-1) by the year 2025. When mitigating options are taken, the emission rate could be limited to 56 Tg yr(-1). The methane emission rate from natural wetlands is about 110 Tg yr(-1). Because changes in the expanse of natural wetland area are difficult to assess, it is assumed that methane emission from natural wetlands would remain constant during the next 100 years. Because of uncertainties with regard to large potential soil sink areas (e.g. savanna, tundra and desert), the global sorption capacity of aerobic soils for atmospheric methane is not completely clear. The actual estimate is 30 Tg yr(-1).In general, the net contribution of soils and landfills to atmospheric methane is estimated at 180 Tg yr(-1) (210 Tg yr(-1) emission, 30 Tg yr(-1) sorption). This is 36% of the global annual methane flux (500 Tg yr(-1)).
评估了当前和未来的垃圾填埋场、稻田和自然湿地的甲烷通量估算值,以及好氧土壤对大气甲烷的吸附能力。还简要讨论了土壤甲烷生成和甲烷营养作用的控制因素和不确定性。垃圾填埋场实际的甲烷排放量估计约为 40Tg yr(-1)。废物产生、废物处理和垃圾填埋场管理的变化可能对未来垃圾场的甲烷排放产生重要影响。如果到 2015 年能够实现所有缓解措施,CH4 排放量可减少至 13Tg yr(-1)。否则,到 2025 年,垃圾填埋场的排放量可能增加到 63Tg yr(-1)。稻田的甲烷排放量估计为 60Tg yr(-1)。1990 年至 2025 年期间,水稻产量的预测增长可能导致 2025 年 CH4 排放量增加到 78Tg yr(-1)。采取缓解措施时,排放量可限制在 56Tg yr(-1)。自然湿地的甲烷排放量约为 110Tg yr(-1)。由于自然湿地面积变化难以评估,因此假定在未来 100 年内,自然湿地的甲烷排放量将保持不变。由于对大的潜在土壤汇区(如热带稀树草原、冻原和沙漠)存在不确定性,好氧土壤对大气甲烷的全球吸附能力尚不完全清楚。实际估计值为 30Tg yr(-1)。总的来说,土壤和垃圾填埋场对大气甲烷的净贡献估计为 180Tg yr(-1)(排放 210Tg yr(-1),吸附 30Tg yr(-1))。这占全球年甲烷通量(500Tg yr(-1))的 36%。