厚血涂片中性粒细胞和疟原虫分布的离散度过大的证据。
Evidence for overdispersion in the distribution of malaria parasites and leukocytes in thick blood smears.
机构信息
, Laboratoire de Mathématiques Appliquées (MAP5) UMR CNRS 8145Université Paris Descartes, Paris, France.
出版信息
Malar J. 2013 Nov 6;12:398. doi: 10.1186/1475-2875-12-398.
BACKGROUND
Microscopic examination of stained thick blood smears (TBS) is the gold standard for routine malaria diagnosis. Parasites and leukocytes are counted in a predetermined number of high power fields (HPFs). Data on parasite and leukocyte counts per HPF are of broad scientific value. However, in published studies, most of the information on parasite density (PD) is presented as summary statistics (e.g. PD per microlitre, prevalence, absolute/assumed white blood cell counts), but original data sets are not readily available. Besides, the number of parasites and the number of leukocytes per HPF are assumed to be Poisson-distributed. However, count data rarely fit the restrictive assumptions of the Poisson distribution. The violation of these assumptions commonly results in overdispersion. The objectives of this paper are to investigate and handle overdispersion in field-collected data.
METHODS
The data comprise the records of three TBSs of 12-month-old children from a field study of Plasmodium falciparum malaria in Tori Bossito, Benin. All HPFs were examined systemically by visually scanning the film horizontally from edge to edge. The numbers of parasites and leukocytes per HPF were recorded and formed the first dataset on parasite and leukocyte counts per HPF. The full dataset is published in this study. Two sources of overdispersion in data are investigated: latent heterogeneity and spatial dependence. Unobserved heterogeneity in data is accounted for by considering more flexible models that allow for overdispersion. Of particular interest were the negative binomial model (NB) and mixture models. The dependent structure in data was modelled with hidden Markov models (HMMs).
RESULTS
The Poisson assumptions are inconsistent with parasite and leukocyte distributions per HPF. Among simple parametric models, the NB model is the closest to the unknown distribution that generates the data. On the basis of model selection criteria AIC and BIC, HMMs provided a better fit to data than mixtures. Ordinary pseudo-residuals confirmed the validity of HMMs.
CONCLUSION
Failure to take overdispersion into account in parasite and leukocyte counts may entail important misleading inferences when these data are related to other explanatory variables (malariometric or environmental). Its detection is therefore essential. In addition, an alternative PD estimation method that accounts for heterogeneity and spatial dependence should be seriously considered in epidemiological studies with field-collected parasite and leukocyte data.
背景
染色厚血涂片(TBS)的显微镜检查是常规疟疾诊断的金标准。寄生虫和白细胞按预定数量的高倍视野(HPF)计数。每 HPF 的寄生虫和白细胞计数数据具有广泛的科学价值。然而,在已发表的研究中,大多数关于寄生虫密度(PD)的信息都是以汇总统计数据(例如每微升 PD、患病率、绝对/假设白细胞计数)呈现的,但原始数据集不易获得。此外,每 HPF 的寄生虫数量和白细胞数量假定为泊松分布。然而,计数数据很少符合泊松分布的限制性假设。违反这些假设通常会导致过度分散。本文的目的是研究和处理现场采集数据中的过度分散。
方法
数据包括来自贝宁托里博西托的恶性疟原虫疟疾现场研究中 12 个月大儿童的三张 TBS 记录。所有 HPF 均通过从边缘到边缘水平扫描胶片进行系统检查。每 HPF 的寄生虫和白细胞数量被记录下来,形成了第一组寄生虫和白细胞计数数据。完整数据集在本研究中发布。研究了数据中两种过度分散的来源:潜在异质性和空间依赖性。通过考虑允许过度分散的更灵活模型来解释数据中的未观察到的异质性。特别感兴趣的是负二项式模型(NB)和混合模型。数据中的依赖结构通过隐马尔可夫模型(HMM)建模。
结果
泊松假设与每 HPF 的寄生虫和白细胞分布不一致。在简单的参数模型中,NB 模型最接近生成数据的未知分布。基于 AIC 和 BIC 选择标准,HMM 比混合物更能拟合数据。普通伪残差证实了 HMM 的有效性。
结论
如果在与其他解释变量(疟疾或环境)相关的寄生虫和白细胞计数中不考虑过度分散,则可能会产生重要的误导性推断。因此,检测它是至关重要的。此外,在具有现场采集寄生虫和白细胞数据的流行病学研究中,应认真考虑一种替代的 PD 估计方法,该方法可以考虑异质性和空间依赖性。
相似文献
Med Trop Sante Int. 2023-5-31
Malar J. 2013-9-22
引用本文的文献
Antimicrob Agents Chemother. 2018-8-27
本文引用的文献
PLoS One. 2013-3-14
Epidemiol Infect. 2011-8-30