Suppr超能文献

肌红蛋白的内水和微秒动力学。

Internal water and microsecond dynamics in myoglobin.

机构信息

Department of Biophysical Chemistry, Lund University , P.O. Box 124, SE-22100 Lund, Sweden.

出版信息

J Phys Chem B. 2013 Nov 27;117(47):14676-87. doi: 10.1021/jp409234g. Epub 2013 Nov 19.

Abstract

Myoglobin (Mb) binds diatomic ligands, like O2, CO, and NO, in a cavity that is only transiently accessible. Crystallography and molecular simulations show that the ligands can migrate through an extensive network of transiently connected cavities but disagree on the locations and occupancy of internal hydration sites. Here, we use water (2)H and (17)O magnetic relaxation dispersion (MRD) to characterize the internal water molecules in Mb under physiological conditions. We find that equine carbonmonoxy Mb contains 4.5 ± 1.0 ordered internal water molecules with a mean survival time of 5.6 ± 0.5 μs at 25 °C. The likely locations of these water molecules are the four polar hydration sites, including one of the xenon-binding cavities, that are fully occupied in all high-resolution crystal structures of equine Mb. The finding that water escapes from these sites, located 17-31 Å apart in the protein, on the same μs time scale suggests a global exchange mechanism. We propose that this mechanism involves transient penetration of the protein by H-bonded water chains. Such a mechanism could play a functional role by eliminating trapped ligands. In addition, the MRD results indicate that 2 or 3 of the 11 histidine residues of equine Mb undergo intramolecular hydrogen exchange on a μs time scale.

摘要

肌红蛋白 (Mb) 在仅短暂可及的腔体内结合双原子配体,如 O2、CO 和 NO。晶体学和分子模拟表明,配体可以通过广泛的瞬态连接腔网络迁移,但对于内部水合位置的位置和占有率存在分歧。在这里,我们使用水 (2)H 和 (17)O 磁共振弛豫分散度 (MRD) 来表征生理条件下 Mb 中的内部水分子。我们发现马属动物碳氧合肌红蛋白含有 4.5 ± 1.0 个有序的内部水分子,在 25°C 时的平均存活时间为 5.6 ± 0.5 μs。这些水分子的可能位置是四个极性水合位点,包括所有马属 Mb 高分辨率晶体结构中完全占据的一个氙结合腔。发现水从这些位于蛋白质中相隔 17-31 Å 的位点以相同的 μs 时间尺度逸出,这表明存在一种全局交换机制。我们提出,这种机制涉及通过氢键连接的水分子链对蛋白质的瞬时穿透。这种机制可以通过消除被困配体来发挥功能作用。此外,MRD 结果表明,马属肌红蛋白的 11 个组氨酸残基中的 2 或 3 个在 μs 时间尺度上经历分子内氢键交换。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d19/3966298/4a67efa5d565/jp-2013-09234g_0002.jpg

相似文献

1
Internal water and microsecond dynamics in myoglobin.
J Phys Chem B. 2013 Nov 27;117(47):14676-87. doi: 10.1021/jp409234g. Epub 2013 Nov 19.
3
Cavities and packing defects in the structural dynamics of myoglobin.
EMBO Rep. 2001 Aug;2(8):674-9. doi: 10.1093/embo-reports/kve159.
4
Visualizing breathing motion of internal cavities in concert with ligand migration in myoglobin.
Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2612-6. doi: 10.1073/pnas.0807774106. Epub 2009 Feb 9.
5
Residence times of water molecules in the hydration sites of myoglobin.
Biophys J. 2000 Dec;79(6):2966-74. doi: 10.1016/S0006-3495(00)76533-7.
7
High-resolution crystal structures of distal histidine mutants of sperm whale myoglobin.
J Mol Biol. 1993 Nov 5;234(1):140-55. doi: 10.1006/jmbi.1993.1569.
9
Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin.
Nature. 2000 Feb 24;403(6772):921-3. doi: 10.1038/35002641.
10
Crystal structure of photolysed carbonmonoxy-myoglobin.
Nature. 1994 Oct 27;371(6500):808-12. doi: 10.1038/371808a0.

引用本文的文献

2
Effect of Exchange Dynamics on the NMR Relaxation of Water in Porous Silica.
J Phys Chem Lett. 2024 Nov 14;15(45):11335-11341. doi: 10.1021/acs.jpclett.4c02590. Epub 2024 Nov 5.
3
A Highly Ordered Nitroxide Side Chain for Distance Mapping and Monitoring Slow Structural Fluctuations in Proteins.
Appl Magn Reson. 2024;55(1-3):251-277. doi: 10.1007/s00723-023-01618-8. Epub 2023 Oct 14.
4
Terahertz spectroscopy as a method for investigation of hydration shells of biomolecules.
Biophys Rev. 2023 Sep 7;15(5):833-849. doi: 10.1007/s12551-023-01131-z. eCollection 2023 Oct.
5
Heterogeneous and Allosteric Role of Surface Hydration for Protein-Ligand Binding.
J Chem Theory Comput. 2023 Mar 28;19(6):1875-1887. doi: 10.1021/acs.jctc.2c00776. Epub 2023 Feb 23.
6
Water as an Intrinsic Structural Element in Cellulose Fibril Aggregates.
J Phys Chem Lett. 2022 Jun 23;13(24):5424-5430. doi: 10.1021/acs.jpclett.2c00781. Epub 2022 Jun 9.
8
Water in protein hydration and ligand recognition.
J Mol Recognit. 2019 Dec;32(12):e2810. doi: 10.1002/jmr.2810. Epub 2019 Aug 27.
9
Slow Dynamics of Tryptophan-Water Networks in Proteins.
J Am Chem Soc. 2018 Jan 17;140(2):675-682. doi: 10.1021/jacs.7b09974. Epub 2018 Jan 3.
10
Perspective: Structure and ultrafast dynamics of biomolecular hydration shells.
Struct Dyn. 2017 Apr 20;4(4):044018. doi: 10.1063/1.4981019. eCollection 2017 Jul.

本文引用的文献

1
Transient access to the protein interior: simulation versus NMR.
J Am Chem Soc. 2013 Jun 12;135(23):8735-48. doi: 10.1021/ja403405d. Epub 2013 May 29.
2
A computational study of water and CO migration sites and channels inside myoglobin.
J Chem Theory Comput. 2013 Feb 12;9(2):1265-1271. doi: 10.1021/ct300862j.
3
Hydrophobic effect drives oxygen uptake in myoglobin via histidine E7.
J Biol Chem. 2013 Mar 1;288(9):6754-62. doi: 10.1074/jbc.M112.426056. Epub 2013 Jan 7.
5
Determination of ligand pathways in globins: apolar tunnels versus polar gates.
J Biol Chem. 2012 Sep 28;287(40):33163-78. doi: 10.1074/jbc.M112.392258. Epub 2012 Aug 1.
6
7
Quantifying the importance of protein conformation on ligand migration in myoglobin.
Biophys J. 2012 Jan 18;102(2):333-41. doi: 10.1016/j.bpj.2011.10.058.
9
Efficient mapping of ligand migration channel networks in dynamic proteins.
Proteins. 2011 Aug;79(8):2475-90. doi: 10.1002/prot.23071. Epub 2011 Jun 2.
10
Atomic-level characterization of the structural dynamics of proteins.
Science. 2010 Oct 15;330(6002):341-6. doi: 10.1126/science.1187409.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验