Suppr超能文献

使用下一代深度测序技术检测膀胱癌患者尿液中的低频FGFR3突变。

Detection of low frequency FGFR3 mutations in the urine of bladder cancer patients using next-generation deep sequencing.

作者信息

Millholland John M, Li Shuqiang, Fernandez Cecilia A, Shuber Anthony P

机构信息

Predictive Biosciences Inc, Lexington, MA, USA.

出版信息

Res Rep Urol. 2012 Jun 27;4:33-40. doi: 10.2147/RRU.S32736. eCollection 2012.

Abstract

Biological fluid-based noninvasive biomarker assays for monitoring and diagnosing disease are clinically powerful. A major technical hurdle for developing these assays is the requirement of high analytical sensitivity so that biomarkers present at very low levels can be consistently detected. In the case of biological fluid-based cancer diagnostic assays, sensitivities similar to those of tissue-based assays are difficult to achieve with DNA markers due to the high abundance of normal DNA background present in the sample. Here we describe a new urine-based assay that uses ultradeep sequencing technology to detect single mutant molecules of fibroblast growth factor receptor 3 (FGFR3) DNA that are indicative of bladder cancer. Detection of FGFR3 mutations in urine would provide clinicians with a noninvasive means of diagnosing early-stage bladder cancer. The single-molecule assay detects FGFR3 mutant DNA when present at as low as 0.02% of total urine DNA and results in 91% concordance with the frequency that FGFR3 mutations are detected in bladder cancer tumors, significantly improving diagnostic performance. To our knowledge, this is the first practical application of next-generation sequencing technology for noninvasive cancer diagnostics.

摘要

用于监测和诊断疾病的基于生物体液的非侵入性生物标志物检测方法在临床上具有强大的作用。开发这些检测方法的一个主要技术障碍是需要高分析灵敏度,以便能够持续检测到极低水平存在的生物标志物。就基于生物体液的癌症诊断检测而言,由于样本中存在大量正常DNA背景,DNA标志物难以达到与基于组织的检测方法相似的灵敏度。在此,我们描述了一种新的基于尿液的检测方法,该方法使用超深度测序技术来检测成纤维细胞生长因子受体3(FGFR3)DNA的单个突变分子,这些分子可指示膀胱癌。检测尿液中的FGFR3突变将为临床医生提供一种诊断早期膀胱癌的非侵入性方法。这种单分子检测方法在FGFR3突变DNA占总尿液DNA低至0.02%时就能检测到,并且与在膀胱癌肿瘤中检测到FGFR3突变的频率有91%的一致性,显著提高了诊断性能。据我们所知,这是下一代测序技术在非侵入性癌症诊断中的首次实际应用。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验