Suppr超能文献

黄化浮萍(G1 品系)质膜间电子传递和弗斯可林诱导的离子流和 pH 变化。

Ion fluxes and pH changes induced by trans-plasmalemma electron transfer and fusicoccin in Lemna gibba L. (strain G1).

机构信息

Institut für Botanik der Technischen Hochschule, Schnittspahnstrasse 3, D-6100, Darmstadt, Germany.

出版信息

Planta. 1990 Feb;180(3):390-9. doi: 10.1007/BF00198791.

Abstract

During the reduction of extracellular Fe(CN)6 at the plasmalemma of intact, K(+)-starved Lemna gibba L. fronds, the external medium was acidified and K(+) released, in the absence of inhibitors with rates of 10 e(-)/8.5 H(+)/1.5 K(+) (μmol·(g FW)(-1)·(-1)). In K(+) plants the larger K(+) efflux caused a lag phase in extracellular acidification and a change in rates to 10 e(-)/6 H(+)/4 K(+) and in the presence of CN(-)+salicylhydroxamic acid at pH 5 to 5.2 e(-)/0 H(+)/6.6 K(+). The e(-) transfer was accompanied by a membrane depolarization of up to 100 mV and a cytosolic acidification of about 0.6 pH units, but only in K(+) plants, where the extracellular acidification was smaller. These results indicate that a stimulation of the plasmalemma H(+)-ATPase may be triggered either by a cytosolic acidification or by a strong membrane depolarization. It is concluded that the redox system catalyses only uncoupled e(-) transfer without H(+) transfer across the plasmalemma. The obligatory, but secondary charge compensation is partially achieved by the rapid K(+) release upon membrane depolarization and partially by the activity of the plasma membrane H(+)-ATPase, but not by an e(-)/anion exchange. The extracellular acidification during Fe(CN)6 reduction is generated by the conversion of a strong trivalent into a strong tetravalent anion. This acidification is caused by changes in the concentration ratio of strong cations to strong anions. Efflux of K(+) and not the production of organic acids or NAD(P)H oxidation is the chemical cause of the measurable cytosolic acidification. Extracellular acidification was inversely correlated with intracellular acidification. Similarly, fusicoccin-induced pH changes were correlated with changes in the strong-ion concentration difference. Extracellular ± FC-dependent acidification and intracellular alkalinization of up to 0.6 pH units were strongly dependent on K(+) fluxes. The ferricyanide-triggered trans-plasmalemma electron-transfer system is an example of how measurable pH changes are the consequence and not the cause of charge-transfer-induced changes in strong-ion fluxes.

摘要

在完整的、缺钾饥饿的浮萍叶片质膜上还原细胞外 Fe(CN)6时,外部介质被酸化,同时钾离子释放,速率为 10 e(-)/8.5 H(+)/1.5 K(+)(μmol·(g FW)(-1)·(-1))。在钾离子植物中,较大的钾离子外排导致细胞外酸化出现滞后阶段,并改变速率为 10 e(-)/6 H(+)/4 K(+),在 pH 5 至 5.2 时存在 CN(-)+水杨羟肟酸时为 5.2 e(-)/0 H(+)/6.6 K(+)。电子转移伴随着高达 100 mV 的膜去极化和约 0.6 pH 单位的细胞质酸化,但仅在钾离子植物中,细胞外酸化较小。这些结果表明,质膜 H(+)-ATP 酶的刺激可能是由细胞质酸化或强膜去极化引发的。因此得出结论,氧化还原系统仅催化不伴随质膜质子转移的不偶联电子转移。必需的,但次要的电荷补偿部分通过膜去极化时钾离子的快速释放来实现,部分通过质膜 H(+)-ATP 酶的活性来实现,但不是通过电子/阴离子交换来实现。在Fe(CN)6还原过程中,细胞外酸化是由强三价阴离子转化为强四价阴离子引起的。这种酸化是由强阳离子与强阴离子浓度比的变化引起的。钾离子的外排而不是有机酸的产生或 NAD(P)H 氧化是可测量细胞质酸化的化学原因。细胞外酸化与细胞内酸化呈负相关。同样, fusicoccin 诱导的 pH 变化与强离子浓度差的变化相关。高达 0.6 pH 单位的细胞外±FC 依赖性酸化和细胞内碱化强烈依赖于钾离子通量。铁氰化物触发的跨质膜电子转移系统是一个例子,说明了可测量的 pH 变化是电荷转移诱导的强离子通量变化的结果,而不是原因。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验