The G.W. Hooper Foundation, Departments of Bioengineering and Therapeutic Sciences, Pharmaceutical Chemistry, and Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America ; Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
PLoS One. 2013 Oct 30;8(10):e77787. doi: 10.1371/journal.pone.0077787. eCollection 2013.
Mobilization of the GLUT4 glucose transporter from intracellular storage vesicles provides a mechanism for insulin-responsive glucose import into skeletal muscle. In humans, clathrin isoform CHC22 participates in formation of the GLUT4 storage compartment in skeletal muscle and fat. CHC22 function is limited to retrograde endosomal sorting and is restricted in its tissue expression and species distribution compared to the conserved CHC17 isoform that mediates endocytosis and several other membrane traffic pathways. Previously, we noted that CHC22 was expressed at elevated levels in regenerating rat muscle. Here we investigate whether the GLUT4 pathway in which CHC22 participates could play a role in muscle regeneration in humans and we test this possibility using CHC22-transgenic mice, which do not normally express CHC22. We observed that GLUT4 expression is elevated in parallel with that of CHC22 in regenerating skeletal muscle fibers from patients with inflammatory and other myopathies. Regenerating human myofibers displayed concurrent increases in expression of VAMP2, another regulator of GLUT4 transport. Regenerating fibers from wild-type mouse skeletal muscle injected with cardiotoxin also showed increased levels of GLUT4 and VAMP2. We previously demonstrated that transgenic mice expressing CHC22 in their muscle over-sequester GLUT4 and VAMP2 and have defective GLUT4 trafficking leading to diabetic symptoms. In this study, we find that muscle regeneration rates in CHC22 mice were delayed compared to wild-type mice, and myoblasts isolated from these mice did not proliferate in response to glucose. Additionally, CHC22-expressing mouse muscle displayed a fiber type switch from oxidative to glycolytic, similar to that observed in type 2 diabetic patients. These observations implicate the pathway for GLUT4 transport in regeneration of both human and mouse skeletal muscle, and demonstrate a role for this pathway in maintenance of muscle fiber type. Extrapolating these findings, CHC22 and GLUT4 can be considered markers of muscle regeneration in humans.
GLUT4 葡萄糖转运蛋白从细胞内储存小泡中的动员为胰岛素应答性葡萄糖摄取到骨骼肌提供了一种机制。在人类中,网格蛋白同工型 CHC22 参与骨骼肌和脂肪中的 GLUT4 储存隔室的形成。CHC22 的功能仅限于逆行内体分选,并且与介导内吞作用和其他几种膜运输途径的保守 CHC17 同工型相比,其组织表达和物种分布受到限制。先前,我们注意到 CHC22 在再生大鼠肌肉中的表达水平升高。在这里,我们研究了 CHC22 参与的 GLUT4 途径是否在人类肌肉再生中发挥作用,并使用通常不表达 CHC22 的 CHC22 转基因小鼠来检验这种可能性。我们观察到,在炎症性和其他肌病患者的再生骨骼肌纤维中,GLUT4 的表达与 CHC22 的表达平行升高。再生的人肌纤维显示出 VAMP2 的表达也同时增加,VAMP2 是 GLUT4 转运的另一种调节剂。用心脏毒素注射的野生型小鼠骨骼肌的再生纤维也显示出 GLUT4 和 VAMP2 水平的增加。我们之前证明,在肌肉中表达 CHC22 的转基因小鼠过度隔离 GLUT4 和 VAMP2,并导致 GLUT4 运输缺陷,导致糖尿病症状。在这项研究中,我们发现 CHC22 小鼠的肌肉再生速度比野生型小鼠慢,并且从这些小鼠中分离的成肌细胞对葡萄糖没有增殖反应。此外,表达 CHC22 的小鼠肌肉显示出纤维类型从氧化型到糖酵解型的转变,类似于 2 型糖尿病患者中观察到的转变。这些观察结果表明 GLUT4 转运途径参与了人类和小鼠骨骼肌的再生,并证明了该途径在维持肌肉纤维类型中的作用。推断这些发现,CHC22 和 GLUT4 可以被认为是人类肌肉再生的标志物。