From the Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.
the Institute of Cell Biology/Electron Microscopy, Centre of Anatomy, Hanover Medical School, 30625 Hanover, Germany.
J Biol Chem. 2017 Dec 22;292(51):20834-20844. doi: 10.1074/jbc.M117.816256. Epub 2017 Nov 2.
Clathrins are cytoplasmic proteins that play essential roles in endocytosis and other membrane traffic pathways. Upon recruitment to intracellular membranes, the canonical clathrin triskelion assembles into a polyhedral protein coat that facilitates vesicle formation and captures cargo molecules for transport. The triskelion is formed by trimerization of three clathrin heavy-chain subunits. Most vertebrates have two isoforms of clathrin heavy chains, CHC17 and CHC22, generating two clathrins with distinct cellular functions. CHC17 forms vesicles at the plasma membrane for receptor-mediated endocytosis and at the trans-Golgi network for organelle biogenesis. CHC22 plays a key role in intracellular targeting of the insulin-regulated glucose transporter 4 (GLUT4), accumulates at the site of GLUT4 sequestration during insulin resistance, and has also been implicated in neuronal development. Here, we demonstrate that CHC22 and CHC17 share morphological features, in that CHC22 forms a triskelion and latticed vesicle coats. However, cellular CHC22-coated vesicles were distinct from those formed by CHC17. The CHC22 coat was more stable to pH change and was not removed by the enzyme complex that disassembles the CHC17 coat. Moreover, the two clathrins were differentially recruited to membranes by adaptors, and CHC22 did not support vesicle formation or transferrin endocytosis at the plasma membrane in the presence or absence of CHC17. Our findings provide biochemical evidence for separate regulation and distinct functional niches for CHC17 and CHC22 in human cells. Furthermore, the greater stability of the CHC22 coat relative to the CHC17 coat may be relevant to its excessive accumulation with GLUT4 during insulin resistance.
网格蛋白是细胞质蛋白,在胞吞作用和其他膜运输途径中发挥重要作用。在被招募到细胞内膜后,经典的网格蛋白三腿复合物组装成多面蛋白衣,促进囊泡形成并捕获用于运输的货物分子。三腿复合物由三个网格蛋白重链亚基三聚化形成。大多数脊椎动物有两种网格蛋白重链同工型,CHC17 和 CHC22,产生两种具有不同细胞功能的网格蛋白。CHC17 在质膜上形成囊泡,用于受体介导的胞吞作用,在高尔基网络上形成囊泡,用于细胞器发生。CHC22 在胰岛素调节的葡萄糖转运体 4(GLUT4)的细胞内靶向中发挥关键作用,在胰岛素抵抗时聚集在 GLUT4 隔离部位,并与神经元发育有关。在这里,我们证明 CHC22 和 CHC17 具有形态特征,即 CHC22 形成三腿复合物和晶格状囊泡衣。然而,细胞 CHC22 包被的囊泡与由 CHC17 形成的囊泡不同。CHC22 衣对 pH 值变化更稳定,并且不会被分解 CHC17 衣的酶复合物去除。此外,两种网格蛋白通过衔接蛋白被不同地招募到膜上,并且在存在或不存在 CHC17 的情况下,CHC22 都不能支持囊泡形成或转铁蛋白内吞作用。我们的研究结果提供了生化证据,证明在人类细胞中 CHC17 和 CHC22 具有独立的调节和不同的功能龛。此外,CHC22 衣相对于 CHC17 衣的稳定性更高,这可能与其在胰岛素抵抗时与 GLUT4 过度积累有关。